1
|
Marzabad MA, Chattopadhyay S, Hietala S, Nonappa N, Marek R, Jurček O. Robust Self-Healing Metallo-Supergels of Folic Acid: Potential Sustainable Gelator for Oilfield Applications. Chemistry 2025; 31:e202500748. [PMID: 40095282 PMCID: PMC12057599 DOI: 10.1002/chem.202500748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
The majority of known metallosupramolecular gels are based on carefully designed ligands using extensive chemical synthesis. Their gelation is often limited to a certain specific metal salt. We demonstrate that in the presence of a wide group of metal salts natural and readily available folic acid (FA) can act as a supergelator. We report a systematic investigation of 17 mechanically robust FA-based metallogels at extremely low concentrations (<0.2 wt%). Using oscillatory rheological measurements, we further show that these metallogels undergo rapid recovery and self-healing, recovering up to 95% of their original stiffness within 1 min. Among the metallogels studied, FA-chromium(III) acetate gel (0.4 wt%) displayed the highest stiffness with a storage modulus of 4 kPa. More importantly, the stiffness, recovery, and sol ↔ gel transitions can be readily tuned by changing either the metal salt or the concentration. Using a combination of various analytical methods, we also suggest a structure of self-assembly in the metallogel network. This study defines non-toxic FA as a robust and sustainable building block for metallogels-mechanically tunable, multi-responsive soft materials. Finally, as a proof-of-concept experiment, we demonstrate that the FA-chromium(III) acetate gel can be considered as a potent sustainable gellator for enhanced oil recovery applications.
Collapse
Affiliation(s)
- Mahya Asgharian Marzabad
- Department of ChemistryFaculty of ScienceMasaryk UniversityBrnoCzechia
- Department of Natural DrugsFaculty of PharmacyMasaryk UniversityBrnoCzechia
- CEITEC – Central European Institute of TechnologyMasaryk UniversityBrnoCzechia
| | - Subhasis Chattopadhyay
- Department of ChemistryFaculty of ScienceMasaryk UniversityBrnoCzechia
- Department of Natural DrugsFaculty of PharmacyMasaryk UniversityBrnoCzechia
- CEITEC – Central European Institute of TechnologyMasaryk UniversityBrnoCzechia
| | - Sami Hietala
- Department of ChemistryUniversity of HelsinkiHelsinkiFinland
| | - Nonappa Nonappa
- Faculty of Engineering and Natural SciencesTampere UniversityTampereFinland
| | - Radek Marek
- Department of ChemistryFaculty of ScienceMasaryk UniversityBrnoCzechia
- CEITEC – Central European Institute of TechnologyMasaryk UniversityBrnoCzechia
| | - Ondřej Jurček
- Department of ChemistryFaculty of ScienceMasaryk UniversityBrnoCzechia
- Department of Natural DrugsFaculty of PharmacyMasaryk UniversityBrnoCzechia
- CEITEC – Central European Institute of TechnologyMasaryk UniversityBrnoCzechia
| |
Collapse
|
2
|
Majumdar S, Pal B, Sahu R, Das KS, Ray PP, Dey B. A croconate-directed supramolecular self-healable Cd(II)-metallogel with dispersed 2D-nanosheets of hexagonal boron nitride: a comparative outcome of the charge-transport phenomena and non-linear rectifying behaviour of semiconducting diodes. Dalton Trans 2022; 51:9007-9016. [PMID: 35638739 DOI: 10.1039/d2dt01206e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of croconic acid disodium salt (CADS) as an organic gelator with Cd(II) salt to obtain an efficient soft-scaffold supramolecular self-healable metallogel (Cd-CADS) in N,N-dimethyl formamide (DMF) media was investigated following an ultrasonication technique. The experimentally scrutinized rheological values of the fabricated metallogel not only revealed the visco-elastic property and mechanical stiffness, but also exposed the self-healable behaviour of the gel material. Two-dimensional (2D) nanosheets of hexagonal boron nitride (h-BN) were incorporated within the gel network to obtain a 2D nanosheet dispersed metallogel of Cd(II) croconate (h-BN@Cd-CADS). The microstructural investigations of the original gel network and hexagonal boron nitride (h-BN) 2D nanosheet dispersed gel-network were performed through field emission scanning electron microscopy (FESEM) and established the interconnecting rod-like fibrous type morphological patterns and inter-connected hexagonal type rod-shaped architecture pattern, respectively. High resolution transmission electron microscopy (HRTEM) was used to visualize the morphological distinction of the Cd-CADS metallogel with the h-BN 2D nanosheets. The infrared spectral (FT-IR) outputs helped to identify the formation pathway to construct the semi-solid self-healing flexible metallogel and h-BN 2D nanosheet dispersed metallogel nanocomposite, respectively. Fascinating electronic-charge transportation was revealed in the as-fabricated Cd-CADS and h-BN@Cd-CADS metallogel-based devices. Furthermore, h-BN 2D-nanosheet-directed modulation of the non-linear rectifying feature of the supramolecular Cd-CADS-metallogel was observed, with the h-BN@Cd-CADS metallogel showing a greater rectifying property, implying that it has a higher conductivity compared to the Cd-CADS metallogel.
Collapse
Affiliation(s)
- Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Rajib Sahu
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
3
|
Özdemir Z, Šaman D, Bertula K, Lahtinen M, Bednárová L, Pazderková M, Rárová L, Wimmer Z. Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid-Spermine Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2693-2706. [PMID: 33595317 DOI: 10.1021/acs.langmuir.0c03335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid-triazole-spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show rapid self-recovery (up to 96% of the initial storage modulus) and sol ⇔ gel transition under several cycles. Interestingly, rheological flow curves reveal the thixotropic behavior of the gels. To the best of our knowledge, this kind of behavior was not shown in the literature before, neither for a triterpenoid nor for its derivatives. Conjugate 4, having a bolaamphiphile-like structure, was found to be a nongelator. Our results indicate that the position and number of spermine units alter the gelation properties, gel strength, and their self-assembly behavior. Preliminary cytotoxicity studies of the target compounds 2-4 in four human cancer cell lines suggest that the position and number of spermine units affect the biological activity. Our results also encourage exploring other triterpenoids and their derivatives as sustainable, renewable, and biologically active building blocks for multifunctional soft organic nanomaterials.
Collapse
Affiliation(s)
- Zulal Özdemir
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Kia Bertula
- Department of Applied Physics, Aalto University, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
4
|
Piras CC, Mahon CS, Smith DK. Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications. Chemistry 2020; 26:8452-8457. [PMID: 32294272 PMCID: PMC7384024 DOI: 10.1002/chem.202001349] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Indexed: 12/28/2022]
Abstract
This Full Paper reports the formation of silver (Ag) NPs within spatially resolved two-component hydrogel beads, which combine a low-molecular-weight gelator (LMWG) DBS-CONHNH2 and a polymer gelator (PG) calcium alginate. The AgNPs are formed through in situ reduction of AgI , with the resulting nanoparticle-loaded gels being characterised in detail. The antibacterial activity of the nanocomposite gel beads was tested against two drug-resistant bacterial strains, often associated with hospital-acquired infections: vancomycin-resistant Enterococcus faecium (VRE) and Pseudomonas aeruginosa (PA14), and the AgNP-loaded gels showed good antimicrobial properties against both types of bacteria. It is suggested that the gel bead format of these AgNP-loaded hybrid hydrogels makes them promising versatile materials for potential applications in orthopaedics or wound healing.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Clare S. Mahon
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
5
|
Kolari K, Bulatov E, Tatikonda R, Bertula K, Kalenius E, Haukka M. Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine-fluorine interactions. SOFT MATTER 2020; 16:2795-2802. [PMID: 32104828 DOI: 10.1039/c9sm02186h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Square planar platinum(ii) complexes are attractive building blocks for multifunctional soft materials due to their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels derived from platinum(ii) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single crystal X-ray diffraction studies, we show that the presence of synergistic platinum-platinum (PtPt) metallopolymerization and fluorine-fluorine (FF) interactions are the major driving forces in achieving hierarchical superstructures. The resulting bright red gels showed the presence of highly entangled three-dimensional networks and helical nanofibres with both (P and M) handedness. The gels recover up to 87% of their original storage modulus even after several cycles under oscillatory step-strain rheological measurements showing rapid self-healing. The luminescence properties, along with thermo- and mechanoresponsive gelation, provide the potential to utilize synthetically simple discrete complexes in advanced optical materials.
Collapse
Affiliation(s)
- Kalle Kolari
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
6
|
Wu H, Zheng J, Kjøniksen AL, Wang W, Zhang Y, Ma J. Metallogels: Availability, Applicability, and Advanceability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806204. [PMID: 30680801 DOI: 10.1002/adma.201806204] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Introducing metal components into gel matrices provides an effective strategy to develop soft materials with advantageous properties such as: optical activity, conductivity, magnetic response activity, self-healing activity, catalytic activity, etc. In this context, a thorough overview of application-oriented metallogels is provided. Considering that many well-established metallogels start from serendipitous discoveries, insights into the structure-gelation relationship will offer a profound impact on the development of metallogels. Initially, design strategies for discovering new metallogels are discussed, then the advanced applications of metallogels are summarized. Finally, perspectives regarding the design of metallogels, the potential applications of metallogels and their derivative materials are briefly proposed.
Collapse
Affiliation(s)
- Huiqiong Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Anna-Lena Kjøniksen
- Faculty of Engineering, Østfold University College, P.O. Box 700, 1757, Halden, Norway
| | - Wei Wang
- Department of Chemistry and Center for Pharmacy, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
7
|
Wei C, Wang X, Gao S, Wen G, Lin Y. A Phenylalanine Derivative Containing a 4‐Pyridine Group Can Construct Both Single Crystals and a Selective Cu‐Ag Bimetallohydrogel. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chuan‐Wan Wei
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
| | - Xiao‐Juan Wang
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
| | - Shu‐Qin Gao
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| | - Ge‐Bo Wen
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| |
Collapse
|
8
|
Tatikonda R, Bulatov E, Özdemir Z, Haukka M. Infinite coordination polymer networks: metallogelation of aminopyridine conjugates and in situ silver nanoparticle formation. SOFT MATTER 2019; 15:442-451. [PMID: 30570631 DOI: 10.1039/c8sm02006j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein we report silver(i) directed infinite coordination polymer network (ICPN) induced self-assembly of low molecular weight organic ligands leading to metallogelation. Structurally simple ligands are derived from 3-aminopyridine and 4-aminopyridine conjugates which are composed of either pyridine or 2,2'-bipyridine cores. The cation specific gelation was found to be independent of the counter anion, leading to highly entangled fibrillar networks facilitating the immobilization of solvent molecules. Rheological studies revealed that the elastic storage modulus (G') of a given gelator molecule is counter anion dependent. The metallogels derived from ligands containing a bipyridine core displayed higher G' values than those with a pyridine core. Furthermore, using single crystal X-ray diffraction studies and 1H-15N two-dimensional (2D) correlation NMR spectroscopy, we show that the tetracoordination of silver ions enables simultaneous coordination polymerization and metallosupramolecular cross-linking. The resulting metallogels show spontaneous, in situ nanoparticle (d < 2-3 nm) formation without any additional reducing agents. The silver nanoparticle formation was followed using spectroscopic studies, and the self-assembled fibrillar networks were imaged using transmission electron microscopy (TEM) imaging.
Collapse
Affiliation(s)
| | - Evgeny Bulatov
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Zülal Özdemir
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague 6, Czech Republic and Institute of Experimental Botany AS CR, Isotope Laboratory, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
9
|
Tigger-Zaborov H, Maayan G. Aggregation of Ag(0) nanoparticles to unexpected stable chain-like assemblies mediated by 2,2′-bipyridine decorated peptoids. J Colloid Interface Sci 2019; 533:598-603. [DOI: 10.1016/j.jcis.2018.08.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
10
|
Song HM, Zink JI. Ag(i)-mediated self-assembly of anisotropic rods and plates in the surfactant mixture of CTAB and Pluronics. RSC Adv 2019; 9:4380-4389. [PMID: 35520198 PMCID: PMC9060553 DOI: 10.1039/c8ra10517k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
One-dimensional (1D) metallogels are commonly observed in metal-coordinated complexes, but there are not many examples of soft crystalline solids which are generated by the self-assembly of metal–polymer complexation in a non-gel state. In a continued effort to obtain 1D materials by utilizing the tendency of Pluronic triblock copolymers to be micellized anisotropically at an elevated temperature, we investigate Ag(i)-mediated self-assembly of the surfactant mixture of Pluronic copolymers and cetyltrimethylammonium bromide (CTAB). At sufficiently high temperature, Pluronic copolymers are known to organize into many crystalline mesophases, such as body-centered-cubic, hexagonal, and lamellar phases. Four Pluronics of L-31, L-64, P-123, and F-108 were studied, and at the concentration of 17.9%, macroscale 1D rods with the aspect ratios ranging from 3.07 to 12.8 are obtained. At the concentration of 35.7%, anisotropic two dimensional (2D) planar plates are observed. These planar structures were believed to be generated from 2D lamellar mesophases, which is consistent with the general phase diagram of Pluronic copolymers that shows lamellar phase with the highest concentration. In the absence of ascorbic acid, rods and plates of larger size are produced. Rather than as a reductant, ascorbic acid is thought to play the roles of an agent to increase the hydrophilicity, and as a mediator to determine the dimension of rods and plates by hindering the long range self-assembly of alkyl chains. Dehydration by the addition of AgNO3, and the increase of hydrophobicity enable self-assembly of alkyl groups of CTAB and Pluronics and promote the formation of crystalline soft solids. Macroscale anisotropic rods and plates were generated by the self-assembly of CTAB and Pluronics in the presence of AgNO3.![]()
Collapse
Affiliation(s)
- Hyon-Min Song
- Department of Chemistry
- Dong-A University
- Busan 604-714
- South Korea
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| |
Collapse
|
11
|
Berdiell IC, Kulak AN, Warriner SL, Halcrow MA. Heterometallic Coordination Polymer Gels Supported by 2,4,6-Tris(pyrazol-1-yl)-1,3,5-triazine. ACS OMEGA 2018; 3:18466-18474. [PMID: 31458419 PMCID: PMC6644042 DOI: 10.1021/acsomega.8b02508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/13/2018] [Indexed: 05/04/2023]
Abstract
Complexes of type [M(tpt)2]X2 (M2+ = Fe2+, Co2+, Ni2+; tpt = 2,4,6-tri{pyrazol-1-yl}-1,3,5-triazine; X- = BF4 - or ClO4 -) crystallize in a cubic lattice, with the metal ion and ligand conformation showing unusual symmetry-imposed disorder. Addition of 1 equiv AgX to the corresponding preformed [M(tpt)2]X2 salt in concentrated MeNO2 solution affords thixotropic gels. Gelation was not observed in analogous reactions using [Mn(tpt)2][ClO4]2, or from reactions in other, more donating solvents. Scanning electron microscopy (SEM) images from dilute solutions of the reagents confirmed the fibrous microstructure of the gels and their homogeneous elemental composition. However, energy-dispersive X-ray data show a reduced Fe/Ag ratio compared to the Co/Ag and Ni/Ag gels, where a 1:1 ratio of metals is evident. More concentrated gels decomposed to silver nanoparticles during SEM sample preparation. Mass spectrometry and 1H NMR indicate that silver induces partial ligand displacement reactions in [Fe(tpt)2]2+ and [Co(tpt)2]2+, but not in [Ni(tpt)2]2+. Hence, the strength of the gels, which follows the order M = Mn (no gel) < Fe < Co < Ni, correlates with the stability of octahedral [M(tpt)2]2+ under gelation conditions. Iron(II) complexes of the related ligands 2,4,6-tri{pyrazol-1-yl}pyridine (tpp) and 2,4,6-tri{pyrazol-1-yl}pyrimidine (tpym) did not undergo gelation with silver salts under the above conditions. The unique properties of tpt as a gelator in this work may reflect the crystallographically observed ability of metal-coordinated tpt to chelate to exogenous silver ions, through its pendant pyrazolyl group and triazinyl N donors. In contrast, the pendant azolyl substituents in silver complexes of the nongelators tpp and tpym only bind exogenous silver in monodentate fashion.
Collapse
|
12
|
Uflyand IE, Dzhardimalieva GI. Molecular design of supramolecular polymers with chelated units and their application as functional materials. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1465567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Chernogolovka, Russian Federation
| |
Collapse
|
13
|
Yan L, Liu C, Shen L, Li J, Liu X, Lv M, Su C, Ye Z. Visual Discrimination of 2-Picolinic Acid by a Supramolecular Metallogel. CHEM LETT 2018. [DOI: 10.1246/cl.180065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Liwei Yan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Cheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Linghong Shen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jialing Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xuan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Mingqian Lv
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Chunjiao Su
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Zhongbin Ye
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil &Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
14
|
Prusinowska N, Szymkowiak J, Kwit M. Enantiopure Tertiary Urea and Thiourea Derivatives of Trianglamine Macrocycle: Structural Studies and Metallogeling Properties. J Org Chem 2018; 83:1167-1175. [PMID: 29310432 DOI: 10.1021/acs.joc.7b02600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis and detailed experimental and theoretical study on new urea and thiourea derivatives of chiral trianglamine are presented. In solution, the urea derivative of the trianglamine adopts cone conformation, whereas a respective thiourea derivative exists in solution predominantly as a partial cone conformer. In the crystalline phase, the thiourea trianglamine derivative adapts partial cone conformation. In the solid state, the two symmetry independent molecules of thiourea trianglamine create bilayers, containing molecules arranged in a zipper motif. The bilayers are separated by channels filled with disordered solvent molecules. The thiourea derivative of trianglimine appeared to be a simple, low molecular weight supergelator that formed stable chiral metallogels in N,N-dimethylformamide with Ag(I), Cu(I). and Cu(II) salts. The enantiomeric enrichment of the macrocycle is a necessary condition for effective gelling because neither racemic nor enantiomerically enriched samples (up to 50% ee) form metallogels. The metallogels formed from silver cations and thiourea trianglamine show reversible thixotropic property rarely observed in metallogels.
Collapse
Affiliation(s)
- Natalia Prusinowska
- Department of Chemistry, Adam Mickiewicz University , Umultowska 89B, 61 614 Poznan, Poland.,Wielkopolska Center for Advanced Technologies (WCAT) , Umultowska 89C, 61 614 Poznan, Poland
| | - Joanna Szymkowiak
- Department of Chemistry, Adam Mickiewicz University , Umultowska 89B, 61 614 Poznan, Poland.,Wielkopolska Center for Advanced Technologies (WCAT) , Umultowska 89C, 61 614 Poznan, Poland
| | - Marcin Kwit
- Department of Chemistry, Adam Mickiewicz University , Umultowska 89B, 61 614 Poznan, Poland.,Wielkopolska Center for Advanced Technologies (WCAT) , Umultowska 89C, 61 614 Poznan, Poland
| |
Collapse
|
15
|
Arnedo-Sánchez L, Nonappa N, Bhowmik S, Hietala S, Puttreddy R, Lahtinen M, De Cola L, Rissanen K. Rapid self-healing and anion selectivity in metallosupramolecular gels assisted by fluorine–fluorine interactions. Dalton Trans 2017; 46:7309-7316. [DOI: 10.1039/c7dt00983f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal complexes from perfluoroalkylamide terpyridine self-assemble into anion selective gels, which manifest self-healing and thermal rearrangement in aqueous dimethyl sulfoxide.
Collapse
Affiliation(s)
| | - Nonappa Nonappa
- Molecular Materials Group
- Department of Applied Physics
- Aalto University School of Science
- Espoo
- Finland
| | - Sandip Bhowmik
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Sami Hietala
- Department of Chemistry
- University of Helsinki
- Helsinki
- Finland
| | - Rakesh Puttreddy
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Manu Lahtinen
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Luisa De Cola
- ISIS
- Université de Strasbourg and CNRS UMR 7006
- Strasbourg 67000
- France
| | - Kari Rissanen
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| |
Collapse
|