1
|
Wang Y, Lu Y, Li X, Zhu G, Li N, Han J, Sun L, Yang Z, Zeng RJ. Light-dependent enhancement of sulfadiazine detoxification and mineralization by non-photosynthetic methanotrophs. WATER RESEARCH 2022; 220:118623. [PMID: 35665677 DOI: 10.1016/j.watres.2022.118623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Co-metabolism and photodegradation are two approaches for remediating trace organic compounds (TOrCs), however, interactions between the two with regards to TOrCs degradation have not been elucidated. In this study, sulfadiazine (SDZ) was chosen as a representative TOrC and Methylocystis bryophila as a typical strain. Under light conditions, about 80.6% of SDZ was removed by M. bryophila, but only 7.6% or 28.9% of SDZ was eliminated by either individual photodegradation or by co-metabolism. The SDZ stimulated more extracellular organic matter (EOM) production by M. bryophila. The enhanced SDZ degradation was attributed to indirect photolysis caused by the excited triplet state of EOM (3EOM*) and co-metabolism. The UPLC-QTOF-MS analysis showed that due to co-metabolism, the pyrimidine ring was broken and could further be oxidized into smaller molecules under light conditions, such as formic and acetic acids. The SDZ mineralization ratio increased from 9.9% under the co-metabolic condition alone to 36.5% under co-metabolism coupled with photodegradation. The Ames tests confirmed that the SDZ degradation products by co-metabolism were mutagenic, however, their toxicity was ameliorated by light during co-metabolism. In conclusion, light plays a crucial role in co-metabolic processes of TOrCs.
Collapse
Affiliation(s)
- Yongzhen Wang
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Xin Li
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Na Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Han
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Liwei Sun
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhonglian Yang
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Pan H, Wang J, Wu H, Li Z, Lian J. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:212. [PMID: 34736496 PMCID: PMC8570001 DOI: 10.1186/s13068-021-02063-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin-Benson-Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. MAIN BODY In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. CONCLUSIONS Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
4
|
Gong Z, Yu H, Zhang J, Li F, Song H. Microbial electro-fermentation for synthesis of chemicals and biofuels driven by bi-directional extracellular electron transfer. Synth Syst Biotechnol 2020; 5:304-313. [PMID: 32995586 PMCID: PMC7490822 DOI: 10.1016/j.synbio.2020.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Electroactive bacteria could perform bi-directional extracellular electron transfer (EET) to exchange electrons and energy with extracellular environments, thus playing a central role in microbial electro-fermentation (EF) process. Unbalanced fermentation and microbial electrosynthesis are the main pathways to produce value-added chemicals and biofuels. However, the low efficiency of the bi-directional EET is a dominating bottleneck in these processes. In this review, we firstly demonstrate the main bi-directional EET mechanisms during EF, including the direct EET and the shuttle-mediated EET. Then, we review representative milestones and progresses in unbalanced fermentation via anode outward EET and microbial electrosynthesis via inward EET based on these two EET mechanisms in detail. Furthermore, we summarize the main synthetic biology strategies in improving the bi-directional EET and target products synthesis, thus to enhance the efficiencies in unbalanced fermentation and microbial electrosynthesis. Lastly, a perspective on the applications of microbial electro-fermentation is provided.
Collapse
Affiliation(s)
- Ziying Gong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Dogutan DK, Nocera DG. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis. Acc Chem Res 2019; 52:3143-3148. [PMID: 31593438 DOI: 10.1021/acs.accounts.9b00380] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sunlight is an abundant energy source for a sustainable society. Indeed, photosynthetic organisms harness solar radiation to build the world around us by synthesizing energy-rich compounds from water and CO2. However, numerous energy conversion bottlenecks in the natural system limits the overall efficiency of photosynthesis; the most efficient plants do not exceed solar storage efficiencies of 1%. Artificial photosynthetic solar-to-fuels cycles may occur at higher intrinsic efficiencies, but they typically terminate at hydrogen, with no process installed to complete the cycle for carbon fixation. This limitation may be overcome by interfacing solar-driven water splitting to H2-oxidizing microorganisms. To this end, hybrid biological-inorganic constructs have been created to use sunlight, air, and water as the only starting materials to accomplish carbon fixation in the form of biomass and liquid fuels. This artificial photosynthetic cycle begins with the Artificial Leaf, which accomplishes the solar process of natural photosynthesis-the splitting of water to hydrogen and oxygen using sunlight-under ambient conditions. To create the Artificial Leaf, an oxygen evolving complex of Photosystem II was mimicked, the most important property of which was the self-healing nature of the catalyst. Self-healing catalysts permit water splitting to be accomplished using any water source, which is the critical development for (1) the Artificial Leaf, as it allows for the facile interfacing of water splitting catalysis to materials such as silicon, and (2) the hybrid biological-inorganic construct, called the Bionic Leaf, as it allows for the facile interfacing of water splitting catalysis to bioorganisms. Hydrogenases in the bioorganism allow the hydrogen to be coupled to NADPH and ATP production, thus allowing the solar energy from water splitting to be converted into cellular energy to drive cellular biosynthesis. In the design of the hybrid system, water splitting catalysts must be designed that support hydrogen generation at low applied potential to ensure a high energy efficiency while avoiding reactive oxygen species. Using the tools of synthetic biology, a bioengineered bacterium, Ralstonia eutropha, converts carbon dioxide from air, along with the hydrogen produced from such catalysts of the Artificial Leaf, into biomass and liquid fuels, thus closing an entire artificial photosynthetic cycle. The Bionic Leaf operates at solar-to-biomass and solar-to-liquid fuels efficiencies that greatly exceed the highest solar-to-biomass efficiencies of natural photosynthesis.
Collapse
Affiliation(s)
- Dilek K. Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138-2902, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138-2902, United States
| |
Collapse
|
6
|
Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nat Catal 2019. [DOI: 10.1038/s41929-019-0264-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Nangle SN, Sakimoto KK, Silver PA, Nocera DG. Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr Opin Chem Biol 2017; 41:107-113. [DOI: 10.1016/j.cbpa.2017.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
|