1
|
Wasana WP, Waterland M, Everett DW, Thum C. Functional Significance of Probiotic Bacterial Interactions with Milk Fat Globules in a Human Host. Microorganisms 2025; 13:223. [PMID: 40005590 PMCID: PMC11857118 DOI: 10.3390/microorganisms13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Dairy products often serve as matrices for delivering probiotic bacteria to humans through the diet; however, little is known about the impact of milk fat globules on the growth and survival of probiotic microorganisms. This review discusses current knowledge on the structure and functionality of the milk fat globule membrane (MFGM) and the structural components contributing to the mechanisms of interactions with probiotic bacteria. We analyzed studies published between 2001 and 2025 with reference to earlier foundational research on probiotics and MFGM structure to explore the functional significance of MFGM-probiotic interactions. Recent research indicates that the effects of MFGM interaction with bacteria are species-specific and may influence probiotic activity in the host, including enhancing probiotic viability during intestinal transit and modulating probiotic colonization. In general, research findings suggest that the MFGM holds potential for use as a probiotic carrier to the gut with beneficial health consequences.
Collapse
Affiliation(s)
- Withanage Prasadini Wasana
- Food Function and Physiology Team, AgResearch, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand;
| | - Mark Waterland
- School of Food Technology and Natural Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - David W. Everett
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand;
- School of Food Technology and Natural Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - Caroline Thum
- Food Function and Physiology Team, AgResearch, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand;
| |
Collapse
|
2
|
Leñini C, Rodriguez Ayala F, Goñi AJ, Rateni L, Nakamura A, Grau RR. Probiotic properties of Bacillus subtilis DG101 isolated from the traditional Japanese fermented food nattō. Front Microbiol 2023; 14:1253480. [PMID: 37840737 PMCID: PMC10569484 DOI: 10.3389/fmicb.2023.1253480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Spore-forming probiotic bacteria offer interesting properties as they have an intrinsic high stability, and when consumed, they are able to survive the adverse conditions encountered during the transit thorough the host gastrointestinal (GI) tract. A traditional healthy food, nattō, exists in Japan consisting of soy fermented by the spore-forming bacterium Bacillus subtilis natto. The consumption of nattō is linked to many beneficial health effects, including the prevention of high blood pressure, osteoporosis, and cardiovascular-associated disease. We hypothesize that the bacterium B. subtilis natto plays a key role in the beneficial effects of nattō for humans. Here, we present the isolation of B. subtilis DG101 from nattō and its characterization as a novel spore-forming probiotic strain for human consumption. B. subtilis DG101 was non-hemolytic and showed high tolerance to lysozyme, low pH, bile salts, and a strong adherence ability to extracellular matrix proteins (i.e., fibronectin and collagen), demonstrating its potential application for competitive exclusion of pathogens. B. subtilis DG101 forms robust liquid and solid biofilms and expresses several extracellular enzymes with activity against food diet-associated macromolecules (i.e., proteins, lipids, and polysaccharides) that would be important to improve food diet digestion by the host. B. subtilis DG101 was able to grow in the presence of toxic metals (i.e., chromium, cadmium, and arsenic) and decreased their bioavailability, a feature that points to this probiotic as an interesting agent for bioremediation in cases of food and water poisoning with metals. In addition, B. subtilis DG101 was sensitive to antibiotics commonly used to treat infections in medical settings, and at the same time, it showed a potent antimicrobial effect against pathogenic bacteria and fungi. In mammalians (i.e., rats), B. subtilis DG101 colonized the GI tract, and improved the lipid and protein serum homeostasis of animals fed on the base of a normal- or a deficient-diet regime (dietary restriction). In the animal model for longevity studies, Caenorhabditis elegans, B. subtilis DG101 significantly increased the animal lifespan and prevented its age-related behavioral decay. Overall, these results demonstrate that B. subtilis DG101 is the key component of nattō with interesting probiotic properties to improve and protect human health.
Collapse
Affiliation(s)
- Cecilia Leñini
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Facundo Rodriguez Ayala
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anibal Juan Goñi
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Liliana Rateni
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Roberto Ricardo Grau
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
3
|
Yuan E, Zhou M, Liang Z, Amakye WK, Hou C, Ren J. Effect of sturgeon protein in promoting the adhesion of Lactobacillus plantarum and Lactobacillus rhamnosus. FOOD BIOSCI 2023; 54:102863. [DOI: 10.1016/j.fbio.2023.102863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
4
|
Liu M, Sun Z, Shi C, Wang J, Wang T, Dziugan P, Zhang B, Zhao H, Jia G. How do Lycium barbarum polysaccharides promote the adhesion of Lactobacillus to Caco-2 cells? J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model. Processes (Basel) 2021. [DOI: 10.3390/pr9040569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of bacteria to adhere to the intestinal mucosa is a critical property necessary for the long-term colonization of the intestinal tract. This ability can be highly sensitive to the presence of prebiotics. However, limited data are available in this respect for beneficial bacteria such as probiotics or resident gut microbiota. We previously demonstrated that the presence of prebiotics may decrease adherence in several pre- and probiotic combinations. Thus, characterizing the interactions between numerous combinations involving different classes of pre- and probiotics can be crucial in identifying new synbiotics. Accordingly, here, we extend our prior analyses to evaluate the adhesion of five lactobacilli, six bifidobacteria, and one probiotic Escherichia coli strains, as commercial probiotics or promising probiotic candidates, together with the cariogenic Bifidobacterium dentium strain. As an in vitro intestinal mucosa model, Caco-2 and mucin-secreting HT29-MTX cells were co-cultured at 9:1 in the presence or absence of prebiotics. Commercial inulin-type fructooligosaccharide prebiotics Orafti® GR, Orafti® P95, and galactooligosaccharide-based prebiotic formula Vivinal®, including purified human milk oligosaccharides (HMOs) were added into the cultivation media as the sole sugar source (2.5% each). Adherence was tested using microtiter plates and was evaluated as the percentage of fluorescently labeled bacteria present in the wells after three washes. Consistent prebiotics-mediated enhanced adherence was observed only for the commercial probiotic strain E. coli O83. For the remaining strains, the presence of HMO or prebiotics Orafti® P95 or Orafti® GR decreased adherence, reaching statistical significance (p < 0.05) for three of out of eight (HMO) or five of out of 11 strains tested, respectively. Conversely, Vivinal® enhanced adhesion in six out of the 12 strains tested, and notably, it significantly attenuated the adherence of the cariogenic Bifidobacterium dentium Culture Collection of Dairy Microorganisms (CCDM) 318. To our knowledge, this represents the first report on the influence of commercial prebiotics and HMOs on the adhesion of the cariogenic Bifidobacterium sp. Vivinal® seems to be a promising prebiotic to be used in the formulation of synbiotics, supporting the adhesion of a wide range of probiotics, especially the strains B. bifidum BBV and BBM and the probiotic Escherichia coli O83.
Collapse
|
6
|
New insights on the colonization of the human gut by health-promoting bacteria. Appl Microbiol Biotechnol 2020; 104:1511-1515. [PMID: 31915900 DOI: 10.1007/s00253-019-10336-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
We are beginning to see how the microbiota of the human gastrointestinal tract (GIT) can drive the development of new products to benefit human health and wellbeing. Despite the growing market for prebiotics and probiotics, there are currently no commercial products available that aid or increase the attachment of health-promoting bacteria to the gut mucosal surface. Components in milk have the potential to increase commensal adherence in the gut by priming the bacteria or the mucosal surface for colonization. Such compositions have potential for supplementation in many products aimed at individuals at different life stages or those suffering from various disease states where lower numbers of health-promoting bacteria such as bifidobacteria are evident. This review will explore how milk ingredients may lead to the attachment of larger numbers of bacteria with health-promoting properties in the gut.
Collapse
|
7
|
Sireswar S, Biswas S, Dey G. Adhesion and anti-inflammatory potential of Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food Funct 2020; 11:2555-2572. [DOI: 10.1039/c9fo02249j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A seabuckthorn based beverage matrix retains the functionality of L. rhamnosus GG and exhibits enhanced anti-inflammatory effects against LPS-induced inflammation in zebrafish.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| | | | - Gargi Dey
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| |
Collapse
|
8
|
Giromini C, Lovegrove JA, Givens DI, Rebucci R, Pinotti L, Maffioli E, Tedeschi G, Sundaram TS, Baldi A. In vitro-digested milk proteins: Evaluation of angiotensin-1-converting enzyme inhibitory and antioxidant activities, peptidomic profile, and mucin gene expression in HT29-MTX cells. J Dairy Sci 2019; 102:10760-10771. [PMID: 31521344 DOI: 10.3168/jds.2019-16833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
Over the past decades, several studies investigated the health-promoting functions of milk peptides. However, to date many hurdles still exist regarding the widespread use of milk-derived bioactive peptides, as they may be degraded during gastrointestinal digestion. Thus, the aim of our study was to in vitro digest intact whey protein isolate (WPI) and casein proteins (CNP), mimicking in vivo digestion, to investigate their bioactive effects and to identify the potential peptides involved. Whey protein isolate and CNP were digested using a pepsin-pancreatin protocol and ultra-filtered (3-kDa cutoff membrane). A permeate (<3 kDa) and a retentate (>3 kDa) were obtained. Soy protein was included as a control (CTR). Angiotensin-1-converting enzyme inhibitory (ACE1-I) and antioxidant activity (AOX) were assessed and compared with those observed in undigested proteins and CTR. Furthermore, the permeate was characterized by nano-liquid chromatography electrospray ionization tandem mass spectrometry (LC-nano ESI MS/MS) using a shotgun peptidomic approach, and retentate was further digested with trypsin and analyzed by MS using a shotgun proteomic approach to identify potentially bioactive peptides. Further, the effects of WPI, CNP, and CTR retentate on cell metabolic activity and on mucus production (MUC5AC and MUC2 gene expression) were assessed in intestinal goblet HT29-MTX-E12 cells. Results showed that WPI permeate induced a significant ACE1-I inhibitory effect [49.2 ± 0.64% (SEM)] compared with undigested WPI, CNP permeate, and retentate or CTR permeate (10.40 ± 1.07%). A significant increase in AOX (1.58 ± 0.04 and 1.61 ± 0.02 µmol of trolox AOX equivalents per mg of protein, respectively) upon digestion was found in WPI. Potentially bioactive peptides associated with ACE1-I and antihypertensive effects were identified in WPI permeate and CNP retentate. At specific concentrations, WPI, CNP, and CTR retentate were able to stimulate metabolic activity in HT29-MTX-E12 cells. Expression of MUC5AC was increased by CNP retentate and unaltered by WPI retentate; MUC2 expression was significantly increased by 0.33 mg/g of CNP and reduced by 1.33 mg/g of CNP. Our results confirm that milk proteins may be rich sources of bioactive compounds, with the greatest beneficial potential of CNP at the intestinal goblet cell level.
Collapse
Affiliation(s)
- Carlotta Giromini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Italy.
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, RG6 6AP United Kingdom; Institute for Cardiovascular and Metabolic Research, University of Reading, RG6 6AP United Kingdom
| | - David I Givens
- Institute for Food, Nutrition and Health, University of Reading, RG6 6AP United Kingdom
| | - Raffaella Rebucci
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Italy
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine, University of Milan, 20133 Italy
| | | | - Tamil S Sundaram
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Italy
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Italy
| |
Collapse
|
9
|
Lv Q, He Q, Wu Y, Chen X, Ning Y, Chen Y. Investigating the Bioaccessibility and Bioavailability of Cadmium in a Cooked Rice Food Matrix by Using an 11-Day Rapid Caco-2/HT-29 Co-culture Cell Model Combined with an In Vitro Digestion Model. Biol Trace Elem Res 2019; 190:336-348. [PMID: 30357757 DOI: 10.1007/s12011-018-1554-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Abstract
Investigating the bioaccessibility and bioavailability of Cd based on real contaminated cooked rice matrixes helps establish an accurate risk assessment method and effectively reduce the digestion and absorption of Cd. An 11-day in vitro rapid Caco-2/HT-29 co-culture cell model was used to establish and evaluate the simulation of the absorption and transport of Cd in the small intestine with a 70:30 Caco-2/HT-29 co-culture ratio and 1.0 mmol L-1 butyric acid as a differentiation inducer. The bioaccessibility and bioavailability of Cd in cooked rice were studied using the cell model combined with an in vitro digestion model. The bioaccessibility of Cd of each of the three cooked rice samples was significantly higher in the gastric phase (59.04-80.23%) than in the gastrointestinal phase (37.14-52.93%). Despite the extension of the digestion time of the gastrointestinal phase, no significant difference was found among the time points. Results demonstrated that the amount of undigested residue, not the level of Cd contamination, significantly contributed to the bioaccessibility of Cd, which was affected by pH or ion. The absorption rate of Cd (25.08% ± 3.05%) was greater than the values obtained using the pure Caco-2 cell models. The bioavailability of Cd (8.29% ± 1.95%) was almost similar to that of Zn2+ (6.66% ± 1.41%) in the cooked rice matrix, indicating that the intestinal epithelium expressed a strong absorptive capacity of Cd during the absorption of essential metallic elements. The 11-day rapid Caco-2/HT-29 co-culture cell model combined with the in vitro digestion model was an efficient tool for studying the bioaccessibility and bioavailability of Cd or other substances in a food matrix to further investigate mechanistic steps and screen a broad set of food matrix factors.
Collapse
Affiliation(s)
- Qian Lv
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Qiang He
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Yue Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China.
| | - Xi Chen
- Academy of State Administration of Grain, No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China
| | - Yali Ning
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Yan Chen
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| |
Collapse
|
10
|
Giromini C, Cheli F, Rebucci R, Baldi A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J Dairy Sci 2018; 102:929-942. [PMID: 30591343 DOI: 10.3168/jds.2018-15163] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Dairy products are one of the most important sources of biologically active proteins and peptides. The health-promoting functions of these peptides are related to their primary structure, which depends on the parent protein composition. A crucial issue in this field is the demonstration of a cause-effect relationship from the ingested protein form to the bioactive form in vivo. Intervention studies represent the gold standard in nutritional research; however, attention has increasingly been focused on the development of sophisticated in vitro models of digestion to elucidate the mechanism of action of dairy nutrients in a mechanistic way and significantly reduce the number of in vivo trials. On the other hand, the epithelial intestinal barrier is the first gate that actively interacts with digestion metabolites, making the intestinal cells the first target tissue of dairy nutrients and respective metabolites. An evolution of the in vitro digestion approach in the study of dairy proteins and derived bioactive compounds is the setup of combined in vitro digestion and cell culture models taking into consideration the endpoint to measure the target organism (e.g., animal, human) and the key concepts of bioaccessibility, bioavailability, and bioactivity. This review discusses the relevance and challenges of modeling digestion and the intestinal barrier, focusing on the implications for the modeling of dairy protein digestion for bioactivity evaluation.
Collapse
Affiliation(s)
- Carlotta Giromini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134.
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| | - Raffaella Rebucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| |
Collapse
|
11
|
Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell. Colloids Surf B Biointerfaces 2018; 167:44-53. [DOI: 10.1016/j.colsurfb.2018.03.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
|
12
|
Horie M, Koike T, Sugino S, Umeno A, Yoshida Y. Evaluation of probiotic and prebiotic-like effects of Bacillus subtilis BN on growth of lactobacilli. J GEN APPL MICROBIOL 2018; 64:26-33. [DOI: 10.2323/jgam.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masanori Horie
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| | | | - Sakiko Sugino
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| | - Aya Umeno
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yasukazu Yoshida
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
13
|
Volstatova T, Marsik P, Rada V, Geigerova M, Havlik J. Effect of apple extracts and selective polyphenols on the adhesion of potential probiotic strains of Lactobacillus gasseri R and Lactobacillus casei FMP. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|