1
|
Zhao Y, Zheng Z, Liu J, Dong X, Yang H, Wu A, Shi Q, Wang H. Structural Optimization of Microfluidic Chips for Enhancing Droplet Manipulation and Observation via Electrodynamics Simulation. CYBORG AND BIONIC SYSTEMS 2025; 6:0217. [PMID: 40051612 PMCID: PMC11884587 DOI: 10.34133/cbsystems.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 03/09/2025] Open
Abstract
Digital microfluidic chips (DMCs) have shown huge potential for biochemical analysis applications due to their excellent droplet manipulation capabilities. The driving force is a critical factor for characterizing and optimizing the performance of droplet manipulation. Conducting numerical analysis of the driving force is essential for DMC design, as it helps optimize the structural parameters. Despite advances in numerical analysis, evaluating driving forces in partially filled electrodes remains challenging. Here, we propose a versatile electrodynamics simulation model designed to analyze the driving forces of partially filled electrodes to optimize the structural parameters of DMCs. This model utilizes finite element analysis to determine the voltage distribution within the DMC and calculates the driving force acting on the droplets using the principles of virtual work. Using this electrodynamics simulation model, we evaluated the effects of various structural parameters, including the dielectric constant and thickness of the dielectric layer, the dielectric constant and conductivity of the droplet, and substrate spacing, on the droplet driving force. This evaluation helps to optimize the structural parameters and enhances the droplet manipulation of DMCs. Measurements of droplet acceleration demonstrated that the droplet acceleration on the partially filled electrode aligns with the simulated driving force trend, which verified the effectiveness of the proposed electrodynamics simulation model. We anticipate that the electrodynamics simulation model is capable of evaluating the driving force in partially filled electrodes within complex DMCs, offering unprecedented possibilities for future structural designs of DMCs.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Zhiqiang Zheng
- Department of Biomedical Engineering,
City University of Hong Kong, Hong Kong 999077, China
| | - Jiaxin Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xinyi Dong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Haotian Yang
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Anping Wu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
2
|
Li K, Li Y, Zhang Q, Li H, Zou W, Li L, Li Y, Zhang X, Tian D, Jiang L. Electrically switched asymmetric interfaces for liquid manipulation. MATERIALS HORIZONS 2025; 12:258-266. [PMID: 39469776 DOI: 10.1039/d4mh01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
External field driven fluid manipulation, in particular electric field, offers the advantages of real-time control and exceptional flexibility, rendering it highly promising for applications in microfluidic devices, liquid separation and energy catalysis. However, it is still challenging for controlled liquid transport and fine control of droplet splitting. Herein, we demonstrate a strategy to achieve direction-controlled liquid transport and fine droplet splitting on an anisotropic groove-microstructured electrode surface via an electrically switched asymmetric interface. The balance of asymmetric capillary force generated by microstructures and electro-capillary force is critical in determining directional liquid transport and fine droplet splitting. Asymmetric bubbles generated by liquid electrolysis form an asymmetric liquid-gas-solid interface and result in gradient liquid wetting behavior on the two neighboring electrode surfaces. The electric field further enhances the asymmetric wetting of a liquid droplet on the electrode surface, exhibiting electric field direction-dependent motion. Moreover, the groove-microstructured electrode surface can strengthen the liquid droplet anisotropic wetting and correspondingly refine the volume range of the splitting sub-droplet. Even unidirectional/bidirectional liquid droplet transport can be controlled in collaboration with the asymmetric groove-microstructure and electric field. Thus, this work provides a new route for liquid transport and droplet splitting, showing great potential in controllable separation, microreaction and microfluidic devices.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Honghao Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Wentao Zou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Lu Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
3
|
Zhou T, Fu R, Hou J, Yang F, Chai F, Mao Z, Deng A, Li F, Guan Y, Hu H, Li H, Lu Y, Huang G, Zhang S, Xie H. Self-Interference Digital Optofluidic Genotyping for Integrated and Automated Label-Free Pathogen Detection. ACS Sens 2024; 9:6411-6420. [PMID: 39561298 DOI: 10.1021/acssensors.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Pathogen, prevalent in both natural and human environments, cause approximately 4.95 million deaths annually, ranking them among the top contributors to global mortality. Traditional pathogen detection methods, reliant on microscopy and cultivation, are slow and labor-intensive and often produce subjective results. While nucleic acid amplification techniques such as polymerase chain reaction offer genetic accuracy, they necessitate costly laboratory equipment and skilled personnel. Consequently, isothermal amplification methods like recombinase polymerase amplification (RPA) have attracted interest for their rapid and straightforward operations. However, these methods face challenges in specificity and automated sample processing. In this study, we introduce a self-interferometric digital optofluidic platform incorporating asymmetric direct solid-phase RPA for real-time, label-free, and automated pathogen genotyping. By integration of digital microfluidics with a DNA monolayer detection method using hyperspectral interferometry, this platform enables rapid, specific, and sensitive pathogen detection without the need for exogenous labeling or complex procedures. The system demonstrated high sensitivity (10 CFU·mL-1), specificity (differentiating four Candida species), detection efficiency (fully automated within 50 min for Gram-negative bacteria), and throughput (simultaneous detection of four indices). This integrated approach to pathogen quantitation on a single microfluidic chip represents a significant advancement in rapid pathogen diagnostics, providing a practical solution for timely pathogen detection and analysis.
Collapse
Affiliation(s)
- Tianqi Zhou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, Henan 450000, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
| | - Jialu Hou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, Henan 450000, China
| | - Fan Yang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fengli Chai
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zeyin Mao
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Anni Deng
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Fenggang Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanfang Guan
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, Henan 450052, China
| | - Hanqi Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, Henan 450000, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
| | - Yao Lu
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
| | - Guoliang Huang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Shuailong Zhang
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, Henan 450000, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huikai Xie
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
| |
Collapse
|
4
|
Zhai J, Liu Y, Ji W, Huang X, Wang P, Li Y, Li H, Wong AHH, Zhou X, Chen P, Wang L, Yang N, Chen C, Chen H, Mak PI, Deng CX, Martins R, Yang M, Ho TY, Yi S, Yao H, Jia Y. Drug screening on digital microfluidics for cancer precision medicine. Nat Commun 2024; 15:4363. [PMID: 38778087 PMCID: PMC11111680 DOI: 10.1038/s41467-024-48616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.
Collapse
Affiliation(s)
- Jiao Zhai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Yingying Liu
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Weiqing Ji
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xinru Huang
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunyi Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
| | - Haoran Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Ada Hang-Heng Wong
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiong Zhou
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- College of electrical and information engineering, Hunan University, Changsha, China
| | - Ping Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lianhong Wang
- College of electrical and information engineering, Hunan University, Changsha, China
| | - Ning Yang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Department of Electronic Information Engineering, Jiangsu University, Zhenjiang, China
| | - Chi Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haitian Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Rui Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
- On leave from Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, Portugal
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Tsung-Yi Ho
- Department of Compute Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuhong Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hailong Yao
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China.
- Faculty of Science and Technology, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
5
|
Wan L, Li M, Law MK, Mak PI, Martins RP, Jia Y. Sub-5-Minute Ultrafast PCR using Digital Microfluidics. Biosens Bioelectron 2023; 242:115711. [PMID: 37797533 DOI: 10.1016/j.bios.2023.115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
The development of a rapid and reliable polymerase chain reaction (PCR) method for point-of-care (POC) diagnosis is crucial for the timely identification of pathogens. Microfluidics, which involves the manipulation of small volumes of fluidic samples, has been shown to be an ideal approach for POC analysis. Among the various microfluidic platforms available, digital microfluidics (DMF) offers high degree of configurability in manipulating μL/nL-scale liquid and achieving automation. However, the successful implementation of ultrafast PCR on DMF platforms presents challenges due to inherent system instability. In this study, we developed a robust and ultrafast PCR in 3.7-5 min with a detection sensitivity comparable to conventional PCR. Specifically, the implementation of the pincer heating scheme homogenises the temperature within a drop. The utilization of a μm-scale porous hydrophobic membrane suppresses the formation of bubbles under high temperatures. The design of a groove around the high-temperature zone effectively mitigates the temperature interference. The integration of a soluble sensor into the droplets provides an accurate and instant in-drop temperature sensing. We envision that the fast, robust, sensitive, and automatic DMF system will empower the POC testing for infectious diseases.
Collapse
Affiliation(s)
- Liang Wan
- The State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China
| | - Mingzhong Li
- The State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China; Silergy Semiconductor (Macau) Limited, Macao, China
| | - Man-Kay Law
- The State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China; Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China
| | - Pui-In Mak
- The State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China; Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China
| | - Rui P Martins
- The State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China; Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China; On Leave from Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Yanwei Jia
- The State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China; Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China.
| |
Collapse
|
6
|
Nemr CR, Sklavounos AA, Wheeler AR, Kelley SO. Digital microfluidics as an emerging tool for bacterial protocols. SLAS Technol 2023; 28:2-15. [PMID: 36323389 DOI: 10.1016/j.slast.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Bacteria are widely studied in various research areas, including synthetic biology, sequencing and diagnostic testing. Protocols involving bacteria are often multistep, cumbersome and require access to a long list of instruments to perform experiments. In order to streamline these processes, the fluid handling technique digital microfluidics (DMF) has provided a miniaturized platform to perform various steps of bacterial protocols from sample preparation to analysis. DMF devices can be paired/interfaced with instrumentation such as microscopes, plate readers, and incubators, demonstrating their versatility with existing research tools. Alternatively, DMF instruments can be integrated into all-in-one packages with on-chip magnetic separation for sample preparation, heating/cooling modules to perform assay steps and cameras for absorbance and/or fluorescence measurements. This perspective outlines the beneficial features DMF offers to bacterial protocols, highlights limitations of current work and proposes future directions for this tool's expansion in the field.
Collapse
Affiliation(s)
- Carine R Nemr
- Department of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA, 91711, USA; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; Department of Pharmaceutical Science, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3E5, Canada; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
7
|
Shen R, Lv A, Yi S, Wang P, Mak PI, Martins RP, Jia Y. Nucleic acid analysis on electrowetting-based digital microfluidics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Fallah K, Fattahi E. Splitting of droplet with different sizes inside a symmetric T-junction microchannel using an electric field. Sci Rep 2022; 12:3226. [PMID: 35217700 PMCID: PMC8881490 DOI: 10.1038/s41598-022-07130-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the current study, droplets dynamics under an asymmetric electric field in a T-junction are numerically studied using COMSOL Multi-physics software. The effect of different factors such as dimensionless length of mother droplet (L*), Capillary number (Ca), and electric capillary number (Cae) are investigated on the breakup process in symmetric T-junctions. Two novel patterns of droplets, namely, hybrid asymmetric splitting mode and sorting patterns, have been observed by imposing an electric field in one branch of the microchannel. It is also concluded that using an electric field is a promising strategy to reach droplets with arbitrary sizes and control over the splitting ratio of daughter droplets precisely in a T- junction by adjusting the electric field strength. After a certain electric capillary number (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left. {Ca_{e} } \right|_{Sorting}$$\end{document}CaeSorting), the mother droplet does not breakup and is sorted on the side of the branch that the electric field imposes. Furthermore, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left. {Ca_{e} } \right|_{Sorting}$$\end{document}CaeSorting increases with the increment of L* and Ca.
Collapse
Affiliation(s)
- Keivan Fallah
- Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran.
| | - Ehsan Fattahi
- Brewing and beverage technology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
9
|
Zhai J, Li C, Li H, Yi S, Yang N, Miao K, Deng C, Jia Y, Mak PI, Martins RP. Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics. LAB ON A CHIP 2021; 21:4749-4759. [PMID: 34761772 DOI: 10.1039/d1lc00895a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidics has been the most promising platform for drug screening with a limited number of cells. However, convenient on-chip preparation of a wide range of drug concentrations remains a large challenge and has restricted wide acceptance of microfluidics in precision medicine. In this paper, we report a digital microfluidic system with an innovative control structure and chip design for on-chip drug dispensing to generate concentrations that span three to four orders of magnitude, enabling single drug or combinatorial multi-drug screening with simple electronic control. Specifically, we utilize droplet ejection from a drug drop sitting on a special electrode, named a drug dispenser, under high-voltage pulse actuation to deliver the desired amount of drugs to be picked up by a cell suspension drop driven by low-voltage sine wave actuation. Our proof-of-principle validation for this technique as a convenient single and multi-drug screening involved testing of the drug toxicity of two chemotherapeutics, cisplatin (Cis) and epirubicin (EP), towards MDA-MB-231 breast cancer cells and MCF-10A normal breast cells. The results are consistent with those screened based on traditional 96-well plates. These findings demonstrate the reliability of the drug screening system with an on-chip drug dispenser. This system with fewer cancer cells, less drug consumption, a small footprint, and high scalability with regard to concentration could pave the way for drug screening on biopsied primary tumor cells for precision medicine or any concentration-related research.
Collapse
Affiliation(s)
- Jiao Zhai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Department of Biomedical Sciences/Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Caiwei Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Haoran Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Shuhong Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Yang
- Department of Electronic Information Engineering, Jiangsu University, Zhenjiang, China
| | - Kai Miao
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Rui P Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
- On leave from Instituto Superior Tecnico, Universidade de Lisboa, Portugal
| |
Collapse
|
10
|
Jin K, Hu C, Hu S, Hu C, Li J, Ma H. "One-to-three" droplet generation in digital microfluidics for parallel chemiluminescence immunoassays. LAB ON A CHIP 2021; 21:2892-2900. [PMID: 34196334 DOI: 10.1039/d1lc00421b] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In digital microfluidics, droplet generation is a fundamental operation for quantitative liquid manipulation. The generation of well-defined micro-droplets on a chip with restricted device geometries has become a real obstacle for digital microfluidics platforms to be used in parallel for in vitro diagnostic applications. Here, we propose a "one-to-three" droplet splitting technique that is able to generate sub-microlitre droplets beyond the "well-known" geometry limit in electrowetting-on-dielectric digital microfluidics. Accordingly, we realized an on-chip magnetic bead chemiluminescence immunoassay for parallel detection with the "one-to-three" technique. With the help of the generated micro droplets, we were able to retain the magnetic beads by a significantly reduced magnetic force. We have shown the detection of five B-type natriuretic peptide analyte samples on a single chip for around 10 minutes. The correlation coefficient of the calibration curve was 0.9942, and the detection limit was lower than 5 pg mL-1.
Collapse
Affiliation(s)
- Kai Jin
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun, Jilin province 130022, P.R.China. and CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, Jiangsu province 215163, P.R.China.
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, Jiangsu province 215163, P.R.China.
| | - Siyi Hu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, Jiangsu province 215163, P.R.China.
| | - Chengyou Hu
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong province 528000, P.R.China
| | - Jinhua Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun, Jilin province 130022, P.R.China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, Jiangsu province 215163, P.R.China.
| |
Collapse
|
11
|
Rui X, Song S, Wang W, Zhou J. Applications of electrowetting-on-dielectric (EWOD) technology for droplet digital PCR. BIOMICROFLUIDICS 2020; 14:061503. [PMID: 33312327 PMCID: PMC7719047 DOI: 10.1063/5.0021177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 05/25/2023]
Abstract
Digital microfluidics is an elegant technique based on single droplets for the design, composition, and manipulation of microfluidic systems. In digital microfluidics, especially in the electrowetting on dielectric (EWOD) system, each droplet acts as an independent reactor, which enables a wide range of multiple parallel biological and chemical reactions at the microscale. EWOD digital microfluidics reduces reagent and energy consumption, accelerates analysis, enables point-of-care diagnostic, simplifies integration with sensors, etc. Such a digital microfluidic system is especially relevant for droplet digital PCR (ddPCR), thanks to its nanoliter droplets and well-controlled volume distribution. At low DNA concentration, these small volumes allow less than one DNA strand per droplet on average (limited dilution) so that after a fixed number of PCR cycles (endpoint PCR), only the DNA in droplets containing the sequence of interest has been amplified and can be detected by fluorescence to yield an accurate count of the sequences of interest using statistical models. Focusing on ddPCR, this article summarizes the latest development and research on EWOD technology for droplet PCR over the last decade.
Collapse
Affiliation(s)
| | | | | | - Jia Zhou
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Li H, Shen R, Dong C, Chen T, Jia Y, Mak PI, Martins RP. Turning on/off satellite droplet ejection for flexible sample delivery on digital microfluidics. LAB ON A CHIP 2020; 20:3709-3719. [PMID: 32974634 DOI: 10.1039/d0lc00701c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital microfluidics has the potential to minimize and automate reactions in biochemical labs. However, the complexity of drop manipulation and sample preparation on-chip has limited its incorporation into daily workflow. In this paper, we report a novel method for flexible sample delivery on digital microfluidics in a wide volume range spanning four orders of magnitude from picoliters to nanoliters. The method is based on the phenomenon of satellite droplet ejection, triggered by a sudden change in the strength of the electric field across a drop on a hydrophobic dielectric surface. By precisely modulating the actuation signal with convenient external electric controls, satellite droplet ejection can be turned on to dispense samples or turned off to transport picking-up drops. A pico-dosing design is presented and validated in this work to demonstrate the direct and flexible on-chip sample delivery. This approach could pave the way for the acceptance of microfluidics as a common platform for daily reactions to realize lab-on-a-chip.
Collapse
Affiliation(s)
- Haoran Li
- The State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Deka DK, Boruah MP, Pati S, Randive PR, Mukherjee PP. Tuning the Splitting Behavior of Droplet in a Bifurcating Channel through Wettability-Capillarity Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10471-10489. [PMID: 32787019 DOI: 10.1021/acs.langmuir.0c01633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a comprehensive computational physics-based study of the influence of surface wettability on the displacement behavior of a droplet in a three-dimensional bifurcating channel. Various surface wettability configurations for the daughter branches are considered to gain insight into the wettability-capillarity interaction. Also, the influence of initial droplet size on the splitting dynamics for different wettability configurations is investigated. Time evolution of the droplet displacement behavior in the bifurcating channel is discussed for different physicochemical parameters including capillary number and wettability. Three distinct flow regimes are identified as the droplet interacts with the bifurcating tip of the channel, namely, splitting, nonsplitting, and oscillating regimes. Furthermore, the occurrence of Rayleigh-Plateau instability in different wettability scenarios is discussed. Additionally, the intricacies associated with the droplet dynamics are elucidated through the temporal evolution of the droplet surface area and mass outflow of the continuous phase. A flow regime map based on the capillary number and wettability contrast of the daughter branches is proposed for a comprehensive description of the droplet dynamics.
Collapse
Affiliation(s)
- Dhrijit Kumar Deka
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, India
| | - Manash Protim Boruah
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, India
| | - Sukumar Pati
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, India
| | - Pitambar R Randive
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, India
| | - Partha P Mukherjee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Wang Z, Bian X, Chen L. A Numerical Study of Droplet Splitting using Different Spacers in EWOD Device. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4302-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Guan Y, Tu J, Li B, Fu J, Zhu M, Chen X, Zhou C. Stripped Electrode Based Electrowetting-on-Dielectric Digital Microfluidics for Precise and Controllable Parallel Microdrop Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9540-9550. [PMID: 32698587 DOI: 10.1021/acs.langmuir.0c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microdrop generation with excellent controllability and volume precision is of paramount significance for a large variety of microfluidic applications. In this work, we propose a new configuration comprising only stripped electrodes of rectangular shape for the closed electrowetting-on-dielectric digital microfluidic (EWOD DMF) system and investigate its parallel microdrop generation outcomes via a numerical approach. The microfluidic droplet motion is solved by a finite-volume scheme on a fixed computational domain. The numerical model is verified by an experimental study of microdrop production from an EWOD DMF device with three different electrode designs. After model verification, we examine the influences of the equilibrium contact angle and the spacing of the microchannel on stripped electrode based microdrop generation outcomes and discover five different regimes including the phenomena of satellite droplet formation and separation cessation. Despite the various generation outcomes, the daughter droplet size is found to vary linearly with a dimensionless EWOD parameter κ*. More importantly, for all successful generations, the deviation of the daughter droplet size from that of the stripped electrode is smaller than 3.5%, which even reaches zero in proper conditions. This new configuration can be utilized as a convenient alternative for electrowetting-induced parallel microdrop production with excellent precision and controllability.
Collapse
Affiliation(s)
- Yin Guan
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jiyue Tu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Baiyun Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jingwei Fu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Mengnan Zhu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xiyang Chen
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Cheng Zhou
- School of Business Administration, Hubei University of Economics, Wuhan, Hubei 430205, People's Republic of China
| |
Collapse
|
16
|
Abstract
With the rapid development of high technology, chemical science is not as it used to be a century ago. Many chemists acquire and utilize skills that are well beyond the traditional definition of chemistry. The digital age has transformed chemistry laboratories. One aspect of this transformation is the progressing implementation of electronics and computer science in chemistry research. In the past decade, numerous chemistry-oriented studies have benefited from the implementation of electronic modules, including microcontroller boards (MCBs), single-board computers (SBCs), professional grade control and data acquisition systems, as well as field-programmable gate arrays (FPGAs). In particular, MCBs and SBCs provide good value for money. The application areas for electronic modules in chemistry research include construction of simple detection systems based on spectrophotometry and spectrofluorometry principles, customizing laboratory devices for automation of common laboratory practices, control of reaction systems (batch- and flow-based), extraction systems, chromatographic and electrophoretic systems, microfluidic systems (classical and nonclassical), custom-built polymerase chain reaction devices, gas-phase analyte detection systems, chemical robots and drones, construction of FPGA-based imaging systems, and the Internet-of-Chemical-Things. The technology is easy to handle, and many chemists have managed to train themselves in its implementation. The only major obstacle in its implementation is probably one's imagination.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
17
|
Water Droplets Translocation and Fission in a 3D Bi-Planar Multifurcated T-Junction Microchannels. Processes (Basel) 2020. [DOI: 10.3390/pr8050510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Droplet fission has gained notable interest in drug delivery applications due to its ability to perform parallel operations in single device. Hitherto, droplet flow behavior in a 3D constriction was scarcely investigated. This study aims to investigate droplets fission inside a 3D bi-planar multifurcated microfluidic device. The flow behavior and droplet size distribution were studied in trifurcated microchannels using distilled water as dispersed phase (1 mPa·s) and olive oil (68 mPa·s) as continuous phase. Various sizes of subordinate daughter droplets were manipulated passively through the modulation of flowrate ratio (Q) (0.15 < Q < 3.33). Overall, we found droplet size coefficient of variations (CV%) ranging from 0.72% to 69%. Highly monodispersed droplets were formed at the upstream T-junction (CV% < 2%) while the droplet fission process was unstable at higher flowrate ratio (Q > 0.4) as they travel downstream (1.5% < CV% < 69%) to splitting junctions. Complex responses to the non-monotonic behavior of mean droplet size was found at the downstream boundaries, which arose from the deformations under nonuniform flow condition. CFD was used as a tool to study the preliminary maximum velocity (Umax) profile for the symmetrical (0.01334 m/s < Umax < 0.0153 m/s) and asymmetrical branched channels (0.0223 m/s< Umax < 0.00438 m/s), thus complementing the experimental model studies.
Collapse
|
18
|
Zhai J, Li H, Wong AHH, Dong C, Yi S, Jia Y, Mak PI, Deng CX, Martins RP. A digital microfluidic system with 3D microstructures for single-cell culture. MICROSYSTEMS & NANOENGINEERING 2020; 6:6. [PMID: 34567621 PMCID: PMC8433300 DOI: 10.1038/s41378-019-0109-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/12/2019] [Accepted: 09/30/2019] [Indexed: 05/12/2023]
Abstract
Despite the precise controllability of droplet samples in digital microfluidic (DMF) systems, their capability in isolating single cells for long-time culture is still limited: typically, only a few cells can be captured on an electrode. Although fabricating small-sized hydrophilic micropatches on an electrode aids single-cell capture, the actuation voltage for droplet transportation has to be significantly raised, resulting in a shorter lifetime for the DMF chip and a larger risk of damaging the cells. In this work, a DMF system with 3D microstructures engineered on-chip is proposed to form semi-closed micro-wells for efficient single-cell isolation and long-time culture. Our optimum results showed that approximately 20% of the micro-wells over a 30 × 30 array were occupied by isolated single cells. In addition, low-evaporation-temperature oil and surfactant aided the system in achieving a low droplet actuation voltage of 36V, which was 4 times lower than the typical 150 V, minimizing the potential damage to the cells in the droplets and to the DMF chip. To exemplify the technological advances, drug sensitivity tests were run in our DMF system to investigate the cell response of breast cancer cells (MDA-MB-231) and breast normal cells (MCF-10A) to a widely used chemotherapeutic drug, Cisplatin (Cis). The results on-chip were consistent with those screened in conventional 96-well plates. This novel, simple and robust single-cell trapping method has great potential in biological research at the single cell level.
Collapse
Affiliation(s)
- Jiao Zhai
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
| | - Haoran Li
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology-ECE, University of Macau, Macau SAR, China
| | - Ada Hang-Heng Wong
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Cheng Dong
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
| | - Shuhong Yi
- Liver Transplantation Center, the Third Affiliated Hospital, Sun Yat-sen University, 510000 Guangzhou, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology-ECE, University of Macau, Macau SAR, China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology-ECE, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Rui P. Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology-ECE, University of Macau, Macau SAR, China
- on leave from Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
|
20
|
LampPort: a handheld digital microfluidic device for loop-mediated isothermal amplification (LAMP). Biomed Microdevices 2019; 21:9. [DOI: 10.1007/s10544-018-0354-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
A digital microfluidic system for loop-mediated isothermal amplification and sequence specific pathogen detection. Sci Rep 2017; 7:14586. [PMID: 29109452 PMCID: PMC5673945 DOI: 10.1038/s41598-017-14698-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/16/2017] [Indexed: 11/15/2022] Open
Abstract
A digital microfluidic (DMF) system has been developed for loop-mediated isothermal amplification (LAMP)-based pathogen nucleic acid detection using specific low melting temperature (Tm) Molecular Beacon DNA probes. A positive-temperature-coefficient heater with a temperature sensor for real-time thermal regulation was integrated into the control unit, which generated actuation signals for droplet manipulation. To enhance the specificity of the LAMP reaction, low-Tm Molecular Beacon probes were designed within the single-stranded loop structures on the LAMP reaction products. In the experiments, only 1 μL of LAMP reaction samples containing purified Trypanosoma brucei DNA were required, which represented over a 10x reduction of reagent consumption when comparing with the conventional off-chip LAMP. On-chip LAMP for unknown sample detection could be accomplished in 40 min with a detection limit of 10 copies/reaction. Also, we accomplished an on-chip melting curve analysis of the Molecular Beacon probe from 30 to 75 °C within 5 min, which was 3x faster than using a commercial qPCR machine. Discrimination of non-specific amplification and lower risk of aerosol contamination for on-chip LAMP also highlight the potential utilization of this system in clinical applications. The entire platform is open for further integration with sample preparation and fluorescence detection towards a total-micro-analysis system.
Collapse
|
22
|
Latip EA, Coudron L, McDonnell MB, Johnston ID, McCluskey DK, Day R, Tracey MC. Protein droplet actuation on superhydrophobic surfaces: a new approach toward anti-biofouling electrowetting systems. RSC Adv 2017. [DOI: 10.1039/c7ra10920b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anti-biofouling behaviour of an electrowetting device using off-the-shelf superhydrophobic materials is demonstrated through protein adsorption measurement and protein-laden droplet actuation.
Collapse
Affiliation(s)
| | - L. Coudron
- School of Engineering and Technology
- University of Hertfordshire
- UK
| | - M. B. McDonnell
- School of Engineering and Technology
- University of Hertfordshire
- UK
- Dstl Porton Down
- Salisbury
| | - I. D. Johnston
- School of Engineering and Technology
- University of Hertfordshire
- UK
| | - D. K. McCluskey
- School of Engineering and Technology
- University of Hertfordshire
- UK
| | - R. Day
- School of Engineering and Technology
- University of Hertfordshire
- UK
| | - M. C. Tracey
- School of Engineering and Technology
- University of Hertfordshire
- UK
| |
Collapse
|