1
|
Seo S, Kim T. Gas transport mechanisms through gas-permeable membranes in microfluidics: A perspective. BIOMICROFLUIDICS 2023; 17:061301. [PMID: 38025658 PMCID: PMC10656118 DOI: 10.1063/5.0169555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Gas-permeable membranes (GPMs) and membrane-like micro-/nanostructures offer precise control over the transport of liquids, gases, and small molecules on microchips, which has led to the possibility of diverse applications, such as gas sensors, solution concentrators, and mixture separators. With the escalating demand for GPMs in microfluidics, this Perspective article aims to comprehensively categorize the transport mechanisms of gases through GPMs based on the penetrant type and the transport direction. We also provide a comprehensive review of recent advancements in GPM-integrated microfluidic devices, provide an overview of the fundamental mechanisms underlying gas transport through GPMs, and present future perspectives on the integration of GPMs in microfluidics. Furthermore, we address the current challenges associated with GPMs and GPM-integrated microfluidic devices, taking into consideration the intrinsic material properties and capabilities of GPMs. By tackling these challenges head-on, we believe that our perspectives can catalyze innovative advancements and help meet the evolving demands of microfluidic applications.
Collapse
Affiliation(s)
- Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Author to whom correspondence should be addressed:. Tel.: +82-52-217-2313. Fax: +82-52-217-2409
| |
Collapse
|
2
|
Wang J, van Dam RM. High-Efficiency Production of Radiopharmaceuticals via Droplet Radiochemistry: A Review of Recent Progress. Mol Imaging 2020; 19:1536012120973099. [PMID: 33296272 PMCID: PMC7731702 DOI: 10.1177/1536012120973099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/02/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
New platforms are enabling radiochemistry to be carried out in tiny, microliter-scale volumes, and this capability has enormous benefits for the production of radiopharmaceuticals. These droplet-based technologies can achieve comparable or better yields compared to conventional methods, but with vastly reduced reagent consumption, shorter synthesis time, higher molar activity (even for low activity batches), faster purification, and ultra-compact system size. We review here the state of the art of this emerging direction, summarize the radiotracers and prosthetic groups that have been synthesized in droplet format, describe recent achievements in scaling up activity levels, and discuss advantages and limitations and the future outlook of these innovative devices.
Collapse
Affiliation(s)
- Jia Wang
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, Los Angeles, CA, USA
| | - R. Michael van Dam
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Frank C, Winter G, Rensei F, Samper V, Brooks AF, Hockley BG, Henderson BD, Rensch C, Scott PJH. Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production. EJNMMI Radiopharm Chem 2019; 4:24. [PMID: 31659546 PMCID: PMC6751239 DOI: 10.1186/s41181-019-0077-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND PET radiopharmaceutical development and the implementation of a production method on a synthesis module is a complex and time-intensive task since new synthesis methods must be adapted to the confines of the synthesis platform in use. Commonly utilized single fluid bus architectures put multiple constraints on synthesis planning and execution, while conventional microfluidic solutions are limited by compatibility at the macro-to-micro interface. In this work we introduce the ISAR synthesis platform and custom-tailored fluid paths leveraging up to 70 individually addressable valves on a chip-based consumable. The ISAR synthesis platform replaces traditional stopcock valve manifolds with a fluidic chip that integrates all fluid paths (tubing) and valves into one consumable and enables channel routing without the single fluid bus constraint. ISAR can scale between the macro- (10 mL), meso- (0.5 mL) and micro- (≤0.05 mL) domain seamlessly, addressing the macro-to-micro interface challenge and enabling custom tailored fluid circuits for a given application. In this paper we demonstrate proof-of-concept by validating a single chip design to address the challenge of synthesizing multiple batches of [13N]NH3 for clinical use throughout the workday. RESULTS ISAR was installed at an academic PET Center and used to manufacture [13N]NH3 in > 96% radiochemical yield. Up to 9 batches were manufactured with a single consumable chip having parallel paths without the need to open the hot-cell. Quality control testing confirmed the ISAR-based [13N]NH3 met existing clinical release specifications, and utility was demonstrated by imaging a rodent with [13N]NH3 produced on ISAR. CONCLUSIONS ISAR represents a new paradigm in radiopharmaceutical production. Through a new system architecture, ISAR integrates the principles of microfluidics with the standard volumes and consumables established in PET Centers all over the world. Proof-of-concept has been demonstrated through validation of a chip design for the synthesis of [13N]NH3 suitable for clinical use.
Collapse
Affiliation(s)
| | - Georg Winter
- GE Healthcare, Oskar-Schlemmer-Str. 11, 80807 Munich, Germany
| | | | | | - Allen F. Brooks
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | - Brian G. Hockley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | - Bradford D. Henderson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | | | - Peter J. H. Scott
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| |
Collapse
|
4
|
Knapp KA, Nickels ML, Manning HC. The Current Role of Microfluidics in Radiofluorination Chemistry. Mol Imaging Biol 2019; 22:463-475. [DOI: 10.1007/s11307-019-01414-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Wang J, Chao PH, van Dam RM. Ultra-compact, automated microdroplet radiosynthesizer. LAB ON A CHIP 2019; 19:2415-2424. [PMID: 31187109 PMCID: PMC7416997 DOI: 10.1039/c9lc00438f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Application of microfluidics offers numerous advantages in the field of radiochemistry and could enable dramatic reductions in the cost of producing radiotracers for positron emission tomography (PET). Droplet-based microfluidics, in particular, requires only microgram quantities of expensive precursors and reagents (compared to milligram used in conventional radiochemistry systems), and occupies a more compact footprint (potentially eliminating the need for specialized shielding facilities, i.e. hot cells). However, the reported platforms for droplet radiosynthesis have several drawbacks, including high cost/complexity of microfluidic reactors, requirement for manual intervention (e.g. for adding reagents), or difficulty in precise control of droplet processes. We describe here a platform based on a particularly simple chip, where reactions take place atop a hydrophobic substrate patterned with a circular hydrophilic liquid trap. The overall supporting hardware (heater, rotating carousel of reagent dispensers, etc.) is very simple and the whole system could be packaged into a very compact format (about the size of a coffee cup). We demonstrate the consistent synthesis of [18F]fallypride with high yield, and show that protocols optimized using a high-throughput optimization platform we have developed can be readily translated to this device with no changes or re-optimization. We are currently exploring the use of this platform for routine production of a variety of 18F-labeled tracers for preclinical imaging and for production of tracers in clinically-relevant amounts by integrating the system with an upstream radionuclide concentrator.
Collapse
Affiliation(s)
- Jia Wang
- Crump Institute for Molecular Imaging and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA. and Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Philip H Chao
- Crump Institute for Molecular Imaging and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA. and Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - R Michael van Dam
- Crump Institute for Molecular Imaging and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA. and Department of Bioengineering, UCLA, Los Angeles, CA, USA
| |
Collapse
|
6
|
Hsu SY, Liu CC, Yang CE, Fu LM. Multifunctional microchip-based distillation apparatus I - Steam distillation for formaldehyde detection. Anal Chim Acta 2019; 1062:94-101. [DOI: 10.1016/j.aca.2019.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
|
7
|
Fornells E, Hilder EF, Shellie RA, Breadmore MC. On-line solvent exchange system: Automation from extraction to analysis. Anal Chim Acta 2019; 1047:231-237. [PMID: 30567655 DOI: 10.1016/j.aca.2018.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 11/30/2022]
Abstract
Removal of organic solvent from sample extracts is required before analysis by reversed phase HPLC to preserve chromatographic performance and allow for bigger injection volumes, boosting sensitivity. Herein, an automated on-line extraction evaporation procedure is integrated with HPLC analysis. The evaporation occurs inside a 200 μm microfluidic channel confined by a vapor permeable membrane. A feedback control algorithm regulates evaporation rate keeping the output flow rate constant. The evaporation process across this membrane was firstly characterized with water/solvent mixtures showing organic solvent removal capabilities. This system allowed continuous methanol, ethanol and acetonitrile removal from samples containing up to 80% organic solvent. An evaporative injection procedure was developed demonstrating the use of the device for fully integrated extract reconstitution coupled to HPLC analysis, applied to analysis of the antibiotic chloramphenicol in milk samples. Sample reconstitution and collection was performed in less than 10 min and can be executed simultaneously to HPLC analysis of the previous sample in a routine workflow, thus having minimal impact on the total sample analysis time when run in a sequence.
Collapse
Affiliation(s)
- Elisenda Fornells
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; ACROSS (Australian Centre for Research on Separation Science), University of Tasmania, Hobart, Tasmania, Australia
| | - Emily F Hilder
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Robert A Shellie
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, Victoria, Australia
| | - Michael C Breadmore
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; ACROSS (Australian Centre for Research on Separation Science), University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
8
|
Fornells E, Hilder EF, Breadmore MC. Preconcentration by solvent removal: techniques and applications. Anal Bioanal Chem 2019; 411:1715-1727. [DOI: 10.1007/s00216-018-1530-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/07/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
|
9
|
|
10
|
Ha NS, Sadeghi S, van Dam RM. Recent Progress toward Microfluidic Quality Control Testing of Radiopharmaceuticals. MICROMACHINES 2017; 8:E337. [PMID: 30400527 PMCID: PMC6190332 DOI: 10.3390/mi8110337] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023]
Abstract
Radiopharmaceuticals labeled with short-lived positron-emitting or gamma-emitting isotopes are injected into patients just prior to performing positron emission tomography (PET) or single photon emission tomography (SPECT) scans, respectively. These imaging modalities are widely used in clinical care, as well as in the development and evaluation of new therapies in clinical research. Prior to injection, these radiopharmaceuticals (tracers) must undergo quality control (QC) testing to ensure product purity, identity, and safety for human use. Quality tests can be broadly categorized as (i) pharmaceutical tests, needed to ensure molecular identity, physiological compatibility and that no microbiological, pyrogenic, chemical, or particulate contamination is present in the final preparation; and (ii) radioactive tests, needed to ensure proper dosing and that there are no radiochemical and radionuclidic impurities that could interfere with the biodistribution or imaging. Performing the required QC tests is cumbersome and time-consuming, and requires an array of expensive analytical chemistry equipment and significant dedicated lab space. Calibrations, day of use tests, and documentation create an additional burden. Furthermore, in contrast to ordinary pharmaceuticals, each batch of short-lived radiopharmaceuticals must be manufactured and tested within a short period of time to avoid significant losses due to radioactive decay. To meet these challenges, several efforts are underway to develop integrated QC testing instruments that automatically perform and document all of the required tests. More recently, microfluidic quality control systems have been gaining increasing attention due to vastly reduced sample and reagent consumption, shorter analysis times, higher detection sensitivity, increased multiplexing, and reduced instrumentation size. In this review, we describe each of the required QC tests and conventional testing methods, followed by a discussion of efforts to directly miniaturize the test or examples in the literature that could be implemented for miniaturized QC testing.
Collapse
Affiliation(s)
- Noel S Ha
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Saman Sadeghi
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - R Michael van Dam
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|