1
|
He XY, Wang XQ, Xiao QL, Liu D, Xu QR, Liu S. Long non-coding RNA NCK1-AS1 functions as a ceRNA to regulate cell viability and invasion in esophageal squamous cell carcinoma via microRNA-133b/ENPEP axis. Cell Cycle 2023; 22:596-609. [PMID: 36412985 PMCID: PMC9928473 DOI: 10.1080/15384101.2022.2138416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 01/04/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
This study is designed to explore the role of long non-coding RNAs (lncRNAs) NCK1-AS1 in proliferative and invasive activities of esophageal squamous cell carcinoma (ESCC) cells by binding to microRNA-133b (miR-133b) to regulate ENPEP. Differentially expressed lncRNAs, miRs, genes and their targeting relationships were screened on ESCC-related gene expression datasets GSE17351 and GSE6188. The targeting relationships among NCK1-AS1, miR-133b, and ENPEP were verified using functional assays. Loss- and gain- of function assays were carried out to examine the roles of NCK1-AS1, miR-133b, and ENPEP in ESCC cell proliferative, invasive, migrative and apoptotic abilities as well as tumorigenesis in vivo. Elevated NCK1-AS1 and ENPEP but reduced miR-133b expression were found in ESCC. NCK1-AS1 knockdown or miR-133b overexpression inhibited the malignant properties of ESCC cells as well as tumorigenesis in vivo. NCK1-AS1 regulated the ENPEP expression by competitively binding to miR-133b. ENPEP overexpression reversed inhibition of NCK1-AS1 knockdown on the function of ESCC cells. This study provides evidence that silencing NCK1-AS1 inhibits expression of ENPEP by sponging miR-133b, thereby suppressing ESCC.
Collapse
Affiliation(s)
- Xiang-Yuan He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xiu-Qi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Qi-Lu Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Duan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Qi-Rong Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Sheng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
2
|
Molaei Ramshe S, Ghaedi H, Omrani MD, Geranpayeh L, Alipour B, Ghafouri-Fard S. Up-regulation of FOXN3-AS1 in invasive ductal carcinoma of breast cancer patients. Heliyon 2021; 7:e08179. [PMID: 34703931 PMCID: PMC8526775 DOI: 10.1016/j.heliyon.2021.e08179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/12/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022] Open
Abstract
Oncogenic and tumor-suppressive roles of long non-coding RNA make them an appropriate target for expression analysis in cancer studies. In this study, we selected two lncRNAs (EMX2OS and FOXN3-AS1) that are resided near the GWAS-identified SNPs for breast cancer (rs2901157 and rs141061110). These transcripts have been identified in different cancer types as either oncogenes or tumor suppressors. In the present investigation, we aimed to quantify the expression level of EMX2OS and FOXN3-AS1 in 44 breast cancer samples and normal adjacent tissues (ANCTs). The FOXN3-AS1 expression level was significantly increased in breast cancer samples compared with ANCTs (P value = 0.02), Also its amounts could distinguish two sets of samples with an accuracy of 70% (P value = 0.009). We have found an association between FOXN3-AS1 expression and tumor size (P value = 0.02). On the other hand, no significant differences were found in the EMX2OS expression level between two sets of samples (P value = 0.44); however, EMX2OS expression level has a significant association with the age of the patients (P value = 0.03). According to our result, FOXN3-AS1 can be demonstrated as a probable diagnostic marker in breast cancer so we suggest further functional studies to find the precise role of these lncRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Samira Molaei Ramshe
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Behnam Alipour
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Silencing of long non-coding RNA LINC01270 inhibits esophageal cancer progression and enhances chemosensitivity to 5-fluorouracil by mediating GSTP1methylation. Cancer Gene Ther 2020; 28:471-485. [PMID: 33199829 DOI: 10.1038/s41417-020-00232-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Esophageal cancer (EC) is a serious digestive malignancy which remains the sixth leading cause of cancer-related deaths worldwide. Emerging evidence suggests the involvement of long non-coding RNAs (lncRNAs) in the tumorigenesis of EC and thus, in this study we explored the potential effects of lncRNA LINC01270 on EC cell proliferation, migration, invasion and, drug resistance via regulation of glutathione S-transferase P1 (GSTP1) methylation. First, we screened out the EC-related differentially expressed lncRNAs, and the expression of our top candidate LINC01270 was quantified in EC tissues and cells. To define the role of LINC01270 in EC progression, we evaluated the proliferation, migration and invasion of EC cells when the LINC01270 was overexpressed or knocked down, in the presence of the GSTP1 methylation inhibitor SGI-1027 and 5-fluorouracil (5-FU). In addition, interaction between LINC01270 and methylation of the GSTP1 promoter was identified. Finally, we assessed transplantable tumor growth in nude mice. LINC01270 was up-regulated and GSTP1 was down-regulated in EC tissues and cells. Silencing of LINC01270 inhibited migration and invasion, and enhanced the sensitivity of 5-FU in EC cells. We found that LINC01270 recruited the DNA methyltransferases DNMT1, DNMT3A and DNMT3B initiating GSTP1 promoter methylation, thereby leading to the proliferation, migration, invasion and drug resistance of EC cells. Moreover, GSTP1 overexpression was observed to reverse the effects of LINC01270 overexpression on EC cells and their response to 5-FU. Taken together, this study shows that inhibition of LINC01270 can lead to suppression of EC progression via demethylation of GSTP1, highlighting this lncRNA as a potential target for EC treatment.
Collapse
|
4
|
Zhou SN. Role of non-coding RNAs in esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2020; 28:453-459. [DOI: 10.11569/wcjd.v28.i12.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the research on the role of non-coding RNAs (ncRNAs) in tumors has received more and more attention. Although research on the role of ncRNAs in the early diagnosis, disease monitoring, treatment guidance, and prognosis prediction of esophageal carcinoma has been gradually carried out, there are still many problems that need to be addressed. In the current paper, I review the progress in the research of ncRNAs in esophageal carcinoma, with an aim to help provide new strategies for the prevention and treatment of esophageal carcinoma.
Collapse
Affiliation(s)
- Su-Na Zhou
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| |
Collapse
|
5
|
Xiao G, Wang P, Zheng X, Liu D, Sun X. FAM83A-AS1 promotes lung adenocarcinoma cell migration and invasion by targeting miR-150-5p and modifying MMP14. Cell Cycle 2019; 18:2972-2985. [PMID: 31522616 DOI: 10.1080/15384101.2019.1664225] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence has indicated that long noncoding RNAs (lncRNAs) play pivotal roles in the processes of cancer occurrence, progression, and treatment. FAM83A-AS1 is a novel onco-lncRNA involved in various cancers. Nevertheless, the biological function and underlying mechanism of FAM83A-AS1 in lung adenocarcinoma (LUAD) remain largely unclear. In this study, we found FAM83A-AS1 to be upregulated in LUAD tissues and closely associated with tumor size, lymph node metastasis, and TNM stage. In addition, high FAM83A-AS1 expression correlated positively with a poor prognosis. Functional investigation revealed that FAM83A-AS1 promotes LUAD cell proliferation, migration, invasion and the epithelial-mesenchymal transition (EMT) in vitro and tumor growth in vivo. Mechanistically, FAM83A-AS1 functions as an endogenous sponge of miR-150-5p by directly targeting it, removing inhibition of MMP14, a target of miR-150-5p. Furthermore, rescue assays demonstrated that FAM83A-AS1 enhances cell migration, invasion and EMT by modulating the miR-150-5p/MMP14 pathway. Collectively, we conclude that the novel FAM83A-AS1/miR-150-5p/MMP14 axis regulates LUAD progression, suggesting an innovative therapeutic strategy for this cancer.
Collapse
Affiliation(s)
- Guodong Xiao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Peili Wang
- Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , China
| | - Xiaoqiang Zheng
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Dapeng Liu
- The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Xin Sun
- The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
6
|
Yao Z, Zhang Y, Xu D, Zhou X, Peng P, Pan Z, Xiao N, Yao J, Li Z. Research Progress on Long Non-Coding RNA and Radiotherapy. Med Sci Monit 2019; 25:5757-5770. [PMID: 31375656 PMCID: PMC6690404 DOI: 10.12659/msm.915647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs longer than 200 nucleotides, are involved in multiple biological and pathological processes, such as proliferation, apoptosis, migration, invasion, angiogenesis, and immune escape. Many studies have shown that lncRNAs participate in the complex network of cancer and play vital roles as oncogenes or tumor-suppressor genes in a variety of cancers. Moreover, recent research has shown that abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy may participate in the progression of cancers and affect the radiation sensitivity of malignant tumor cells mediated by specific signaling pathways or cell cycle regulation. In this review, we summarize the published studies on lncRNAs in radiotherapy regarding the biological function and mechanism of human cancers, including esophageal cancer, pancreatic cancers, nasopharyngeal carcinoma, hepatocellular carcinoma, cervical cancer, colorectal cancer, and gastric cancer.
Collapse
Affiliation(s)
- Zhifeng Yao
- Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Danghui Xu
- Department of Medical Imaging, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xuejun Zhou
- Department of Medical Imaging, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Peng Peng
- Department of Nursing, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhiyao Pan
- Department of Basic Medicine, Zhejiang University Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Nan Xiao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhifeng Li
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
7
|
Screening of important lncRNAs associated with the prognosis of lung adenocarcinoma, based on integrated bioinformatics analysis. Mol Med Rep 2019; 19:4067-4080. [PMID: 30896819 PMCID: PMC6471985 DOI: 10.3892/mmr.2019.10061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
The study aimed to elucidate the mechanisms underlying the occurrence and development of lung adenocarcinoma, and to reveal long non-coding RNA (lncRNA) prognostic factors to identify patients at high risk of disease recurrence or metastasis. Based on extensive RNA sequencing data and clinical survival prognosis information from patients with lung adenocarcinoma, obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases, a co-expression network of lncRNAs with different expression levels was built using weighted correlation network analysis and MetaDE.ES. The prognostic lncRNAs were identified using the Cox proportional hazards model and Kaplan-Meier survival curves to construct a risk scoring system. The reliability of the system was confirmed in validation datasets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed on the genes significantly associated with the prognostic lncRNAs using gene set enrichment analysis. A total of 58 and 1,633 differentially expressed lncRNAs and mRNAs were identified, respectively. Considering the module stability, annotation, correlation between modules and clinical factors, and the differential expression levels of lncRNAs, 32 differentially expressed lncRNAs were selected from the brown, red, blue, green and yellow modules for subsequent survival analysis. A signature-based risk scoring system involving five lncRNAs [DIAPH2 antisense RNA 1, FOXN3 antisense RNA 2, long intergenic non-protein coding RNA 652, maternally expressed 3 and RHPN1 antisense RNA 1 (head to head)] was developed. The system successfully distinguished between low- and high-risk prognostic samples. System effectiveness was further verified using two independent validation datasets. Further KEGG pathway analysis indicated that the target genes of the five prognostic lncRNAs were associated with a number of cellular processes and signaling pathways, including the cell receptor-mediated signaling and cell adhesion pathways. A five-lncRNA signature predicts the prognosis of patients with lung adenocarcinoma. These prognostic lncRNAs may be potential diagnostic markers. The present results may help elucidate the pathogenesis of lung adenocarcinoma.
Collapse
|
8
|
Li W, Zhao W, Lu Z, Zhang W, Yang X. Long Noncoding RNA GAS5 Promotes Proliferation, Migration, and Invasion by Regulation of miR-301a in Esophageal Cancer. Oncol Res 2018; 26:1285-1294. [PMID: 29386089 PMCID: PMC7844703 DOI: 10.3727/096504018x15166193231711] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) has been revealed to be associated with the progression of various cancers. However, the biological roles of GAS5 in esophageal cancer (EC) remain unclear. We aimed to thoroughly explore the functions of GAS5 in EC. The results showed that GAS5 expression was increased in EC cells (ECA109, TE-1, TE-3, and EC9706) compared to SHEE cells. Knockdown of GAS5 decreased cell viability, migration, and invasion and induced apoptosis in EC9706 cells. Moreover, miR-301a appeared to be directly sponged by GAS5, and miR-301a suppression obviously alleviated the protumor effects of GAS5. Furthermore, miR-301a positively regulated CXCR4 expression, and overexpression of CXCR4 induced apoptosis and abolished the promoting effect of miR-301a inhibition on cell viability, migration, and invasion. Besides, miR-301a blocked Wnt/β-catenin and NF-κB signaling pathways by regulation of CXCR4. Our results indicated that GAS5 promoted proliferation and metastasis and inhibited apoptosis by regulation of miR-301a in EC. These data contributed to our understanding of the mechanisms of miRNA-lncRNA interaction and provides a novel therapeutic strategy for EC.
Collapse
Affiliation(s)
- Wei Li
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Weidong Zhao
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Zhaohui Lu
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Wen Zhang
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Xuan Yang
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| |
Collapse
|
9
|
Abraham JM, Meltzer SJ. Long Noncoding RNAs in the Pathogenesis of Barrett's Esophagus and Esophageal Carcinoma. Gastroenterology 2017; 153:27-34. [PMID: 28528706 PMCID: PMC5515484 DOI: 10.1053/j.gastro.2017.04.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
For many years, only a small fraction of the human genome was believed to regulate cell function and development. This protein-coding portion composed only 1% to 2% of 3 billion human DNA base pairs-the remaining sequence was classified as junk DNA. Subsequent research has revealed that most of the genome is transcribed into a broad array of noncoding RNAs, ranging in size from microRNA (20-23 nucleotides) to long noncoding RNA (lncRNA, more than 200 nucleotides). These noncoding RNA classes have been shown to use diverse molecular mechanisms to control gene expression and organ system development. As anticipated, alterations in this large control system can contribute to disease pathogenesis and carcinogenesis. We review the involvement of noncoding RNAs, lncRNAs in particular, in development of Barrett's esophagus and esophageal carcinoma.
Collapse
|