1
|
Inamoto I, Sheoran I, Popa SC, Hussain M, Shin JA. Combining Rational Design and Continuous Evolution on Minimalist Proteins That Target the E-box DNA Site. ACS Chem Biol 2021; 16:35-44. [PMID: 33370105 DOI: 10.1021/acschembio.0c00684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-based therapeutics are part of the next-generation arsenal of drugs being developed against proto-oncoprotein Myc. We designed protein MEF to mimic the basic region/helix-loop-helix/leucine zipper (bHLHZ) domain of Max and Myc, which bind to the E-box motif (enhancer box, CACGTG). To make MEF, we started with our rationally designed ME47, a hybrid of the Max basic region and E47 HLH, that effectively inhibited tumor growth in a mouse model of breast cancer. We used phage-assisted continuous evolution (PACE), which uncovered mutations at Arg12 that contact the DNA phosphodiester backbone. The Arg12 mutations improved ME47's stability. We replaced Cys29 with Ala to eliminate potential undesired disulfide formation and fused the designed FosW leucine zipper to mutated ME47 to increase the dimerization interface and E-box targeting activity. This "franken-protein" MEF comprises the Max basic region, E47 HLH, and FosW leucine zipper. Compared with ME47, MEF gives 2-fold stronger binding to E-box and 4-fold increased specificity for E-box over nonspecific DNA. The synergistic combination of rational design and PACE allowed us to make MEF and demonstrates the power and utility of our two-pronged approach toward development of promising protein drugs with robust structure and DNA-binding function.
Collapse
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Inder Sheoran
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Serban C. Popa
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Montdher Hussain
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
2
|
Borovok N, Weiss C, Sharkia R, Reichenstein M, Wissinger B, Azem A, Mahajnah M. Gene and Protein Expression in Subjects With a Nystagmus-Associated AHR Mutation. Front Genet 2020; 11:582796. [PMID: 33193710 PMCID: PMC7542227 DOI: 10.3389/fgene.2020.582796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
Recently, a consanguineous family was identified in Israel with three children affected by Infantile Nystagmus and Foveal Hypoplasia, following an autosomal recessive mode of inheritance. A homozygous stop mutation c.1861C > T; p.Q621∗ in the aryl hydrocarbon receptor (AHR) gene (AHR; MIM 600253) was identified that co-segregated with the disease in the larger family. AHR is the first gene to be identified causing an autosomal recessive Infantile Nystagmus-related disease in humans. The goal of this study is to delineate the molecular basis of this newly discovered human genetic disorder associated with a rare AHR gene mutation. The gene and protein expression levels of AHR and selected AHR targets from leukocyte cultures of healthy subjects and the patients were analyzed. We observed significant variation between mRNA and protein expression of CYP1A1, CYP1B1, and TiPARP under rest and AHR-induced conditions. The CYP1A1 enzymatic activity in induced leukocytes also differs significantly between the patients and healthy volunteers. Intriguingly, the heterozygous subjects demonstrate CYP1A1 and TiPARP gene and protein expression similar to homozygous patients. In contrast, CYP1B1 inducibility and expression vary between hetero- and homozygous subjects. Similarity and differences in gene and protein expression between heterozygotes and homozygous patients can give us a hint as to which metabolic pathway/s might be involved in the Nystagmus etiology. Thus, we have a unique human model for AHR deficiency that will allow us the opportunity to study the biochemical basis of this rare human mutation, as well as the involvement of AHR in other physiological processes.
Collapse
Affiliation(s)
- Natalia Borovok
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Celeste Weiss
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Rajech Sharkia
- Triangle Research and Development Center, Kafr Qara, Israel.,Beit Berl College, Beit Berl, Israel
| | - Michal Reichenstein
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Bernd Wissinger
- Institute for Ophthalmic Research Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Abdussalam Azem
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Muhammad Mahajnah
- Hillel Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Pogenberg V, Ballesteros-Álvarez J, Schober R, Sigvaldadóttir I, Obarska-Kosinska A, Milewski M, Schindl R, Ögmundsdóttir MH, Steingrímsson E, Wilmanns M. Mechanism of conditional partner selectivity in MITF/TFE family transcription factors with a conserved coiled coil stammer motif. Nucleic Acids Res 2020; 48:934-948. [PMID: 31777941 PMCID: PMC6954422 DOI: 10.1093/nar/gkz1104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022] Open
Abstract
Interrupted dimeric coiled coil segments are found in a broad range of proteins and generally confer selective functional properties such as binding to specific ligands. However, there is only one documented case of a basic-helix–loop–helix leucine zipper transcription factor—microphthalmia-associated transcription factor (MITF)—in which an insertion of a three-residue stammer serves as a determinant of conditional partner selectivity. To unravel the molecular principles of this selectivity, we have analyzed the high-resolution structures of stammer-containing MITF and an engineered stammer-less MITF variant, which comprises an uninterrupted symmetric coiled coil. Despite this fundamental difference, both MITF structures reveal identical flanking in-phase coiled coil arrangements, gained by helical over-winding and local asymmetry in wild-type MITF across the stammer region. These conserved structural properties allow the maintenance of a proper functional readout in terms of nuclear localization and binding to specific DNA-response motifs regardless of the presence of the stammer. By contrast, MITF heterodimer formation with other bHLH-Zip transcription factors is only permissive when both factors contain either the same type of inserted stammer or no insert. Our data illustrate a unique principle of conditional partner selectivity within the wide arsenal of transcription factors with specific partner-dependent functional readouts.
Collapse
Affiliation(s)
| | - Josué Ballesteros-Álvarez
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Romana Schober
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Gruberstraße 40, A-4020 Linz, Austria
| | - Ingibjörg Sigvaldadóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Agnieszka Obarska-Kosinska
- EMBL Hamburg c/o DESY, Notkestraße 85, 22607 Hamburg, Germany.,Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Morlin Milewski
- EMBL Hamburg c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010 Graz, Austria
| | - Margrét Helga Ögmundsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Matthias Wilmanns
- EMBL Hamburg c/o DESY, Notkestraße 85, 22607 Hamburg, Germany.,University Hamburg Clinical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Popa SC, Shin JA. The Intrinsically Disordered Loop in the USF1 bHLHZ Domain Modulates Its DNA-Binding Sequence Specificity in Hereditary Asthma. J Phys Chem B 2019; 123:9862-9871. [PMID: 31670516 DOI: 10.1021/acs.jpcb.9b06719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
USF1, a basic region/helix-loop-helix/leucine zipper (bHLHZ) transcription factor, binds to the E-box in the PAI-1 (plasminogen activator inhibitor) promoter. Two alleles containing the E-box control PAI-1 transcription; these alleles are termed "4G" and "5G" based on the G tract flanking E-box. USF1-governed transcription of PAI-1 is elevated in heritable asthma sufferers: the 4G/4G genotype has the highest plasma levels of PAI-1. While USF1 uses its basic region to bind E-box, we found that it uses its 12 amino-acid loop to recognize the flanking sequence and discern the single-nucleotide difference between the alleles. We used the bacterial one-hybrid and electrophoretic mobility shift assays to assess protein-DNA recognition, and circular dichroism to examine protein secondary structure. We mutated Ser233 and Thr234 in the USF1 bHLHZ loop to Ala to generate S233A and T234A. Interestingly, USF1 bHLHZ, S233A, and T234A prefer the 5G sequence (USF1 bHLHZ Kd values 4.1 ± 0.3 nM and 7.0 ± 0.4 nM for 5G and 4G, respectively), whereas studies in stimulated human mast cells showed a preference for 4G. We replaced the 8 amino-acid loop of transcription factor Max bHLHZ with the 12 amino-acid USF1 loop: this mutant now distinguishes the 4G/5G polymorphism-while Max bHLHZ does not-confirming that USF1 differentiation of the 4G/5G is driven by the loop.
Collapse
Affiliation(s)
- Serban C Popa
- Department of Chemistry , University of Toronto , 3359 Mississauga Road , Mississauga , Ontario L5L 1C6 , Canada
| | - Jumi A Shin
- Department of Chemistry , University of Toronto , 3359 Mississauga Road , Mississauga , Ontario L5L 1C6 , Canada
| |
Collapse
|
5
|
Górska AM, Gouveia P, Borba AR, Zimmermann A, Serra TS, Lourenço TF, Margarida Oliveira M, Peterhänsel C, Saibo NJM. ZmbHLH80 and ZmbHLH90 transcription factors act antagonistically and contribute to regulate PEPC1 cell-specific gene expression in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:270-285. [PMID: 30900785 DOI: 10.1111/tpj.14323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Compartmentation of photosynthetic reactions between mesophyll and bundle sheath cells is a key feature of C4 photosynthesis and depends on the cell-specific accumulation of major C4 enzymes, such as phosphoenolpyruvate carboxylase 1. The ZmPEPC1 upstream region, which drives light-inducible and mesophyll-specific gene expression in maize, has been shown to keep the same properties when introduced into rice (C3 plant), indicating that rice has the transcription factors (TFs) needed to confer C4 -like gene expression. Using a yeast one-hybrid approach, we identified OsbHLH112, a rice basic Helix-Loop-Helix (bHLH) TF that interacts with the maize ZmPEPC1 upstream region. Moreover, we found that maize OsbHLH112 homologues, ZmbHLH80, and ZmbHLH90, also interact with the ZmPEPC1 upstream region, suggesting that these C4 regulators were co-opted from C3 plants. A transactivation assay in maize mesophyll protoplasts revealed that ZmbHLH80 represses, whereas ZmbHLH90 activates, ZmPEPC1 expression. In addition, ZmbHLH80 was shown to impair the ZmPEPC1 promoter activation caused by ZmbHLH90. We showed that ZmbHLH80 and ZmbHLH90 bind to the same cis-element within the ZmPEPC1 upstream region either as homodimers or heterodimers. The formation of homo- and heterodimers with higher oligomeric forms promoted by ZmbHLH80 may explain its negative effect on gene transcription. Gene expression analysis revealed that ZmbHLH80 is preferentially expressed in bundle sheath cells, whereas ZmbHLH90 does not show a clear cell-specific expression pattern. Altogether, our results led us to propose a model in which ZmbHLH80 contributes to mesophyll-specific ZmPEPC1 gene expression by impairing ZmbHLH90-mediated ZmPEPC1 activation in the bundle sheath cells.
Collapse
Affiliation(s)
- Alicja M Górska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Paulo Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Ana R Borba
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Anna Zimmermann
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
- Leibniz Universität Hannover, Institut für Botanik, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Tânia S Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Tiago F Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Maria Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Christoph Peterhänsel
- Leibniz Universität Hannover, Institut für Botanik, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| |
Collapse
|
6
|
Basile A, Fambrini M, Tani C, Shukla V, Licausi F, Pugliesi C. The
Ha‐ROXL
gene is required for initiation of axillary and floral meristems in sunflower. Genesis 2019; 57:e23307. [DOI: 10.1002/dvg.23307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Alice Basile
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| | - Camilla Tani
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| | - Vinay Shukla
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
| | - Francesco Licausi
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
- Department of BiologyUniversity of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| |
Collapse
|