1
|
Vicente FA, Tkalec N, Likozar B. Responsive deep eutectic solvents: mechanisms, applications and their role in sustainable chemistry. Chem Commun (Camb) 2025; 61:1002-1013. [PMID: 39661071 DOI: 10.1039/d4cc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In an era so focused on sustainability, it is important to improve chemical processes by developing and using more environmentally friendly solvents and technologies. Deep eutectic solvents (DES) have proven to be a promising replacement for conventional solvents. In recent years, a new type of DES has emerged that responds to various stimuli. These responsive DES (RDES) may offer all the advantages of DES while allowing the recycling and reuse of solvents. As such, RDES can further contribute to a greener future. This review provides an overview of the diverse types of RDES, their switching mechanisms and their application in several fields. Lastly, it offers a critical perspective on current shortcomings and prospects.
Collapse
Affiliation(s)
- Filipa A Vicente
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Nuša Tkalec
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Ramezani M, Ellis SN, Riabtseva A, Cunningham MF, Jessop PG. CO 2-Responsive Low Molecular Weight Polymer with High Osmotic Pressure as a Draw Solute for Forward Osmosis. ACS OMEGA 2023; 8:49259-49269. [PMID: 38162778 PMCID: PMC10753694 DOI: 10.1021/acsomega.3c07644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
A key challenge in the development of forward osmosis (FO) technology is to identify a suitable draw solute that can generate a large osmotic pressure with favorable water flux while being easy to recover after the FO process with a minimum of energy expenditure. While the CO2- and thermo-responsive linear poly(N,N-dimethylallylamine) polymer (l-PDMAAm) has been reported as a promising draw agent for forward osmosis desalination, the draw solutions sufficiently concentrated to have high osmotic pressure were too viscous to be usable in industrial operations. We now compare the viscosities and osmotic pressures of solutions of these polymers at low and high molecular weights and with/without branching. The best combination of high osmotic pressures with low viscosity can be obtained by using low molecular weights rather than branching. Aqueous solutions of the synthesized polymer showed a high osmotic pressure of 170 bar under CO2 (πCO2) at 50 wt% loading, generating a high water flux against NaCl feed solutions in the FO process. Under air, however, the same polymer showed a low osmotic pressure and a cloud point between 26 and 33 °C (depending on concentration), which facilitates the recovery of the polymer after it has been used as a draw agent in the FO process upon removal of CO2 from the system.
Collapse
Affiliation(s)
- Maedeh Ramezani
- Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6,Canada
- Department
of Chemical Engineering, Queen’s
University, Kingston, ON K7L 3N6,Canada
| | - Sarah N. Ellis
- Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6,Canada
| | - Anna Riabtseva
- Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6,Canada
- Department
of Chemical Engineering, Queen’s
University, Kingston, ON K7L 3N6,Canada
| | | | - Philip G. Jessop
- Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6,Canada
| |
Collapse
|
3
|
Kwon M, Yang J, Kim H, Joo H, Joo SW, Lee YS, Lee HJ, Jeong SY, Han JH, Paik HJ. Controlling Graphene Wrinkles through the Phase Transition of a Polymer with a Low Critical Solution Temperature. Macromol Rapid Commun 2021; 42:e2100489. [PMID: 34599783 DOI: 10.1002/marc.202100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Indexed: 11/06/2022]
Abstract
A novel method for controlling reduced graphene oxide (rGO) wrinkles through a phase transition in a solution using a low critical solution temperature (LCST) polymer dispersant has been developed. The polymer dispersant is designed by control of architecture and composition using reversible addition-fragmentation chain transfer polymerization. Synthesized poly(2-(dimethylaminoethyl) methacrylate-block-styrene) (PDbS) can be successfully functionalized on the rGO surface via noncovalent functionalization. PDbS-functionalized rGO (PDbS-rGO) exhibits good dispersibility in an aqueous phase at room temperature and forms wrinkles on the PDbS-rGO surface because of phase transition at the LCST of the polymer dispersant. The formation of PDbS-rGO wrinkles is controlled by varying the aggregation number of the polymer dispersant on the PDbS-rGO surface that strongly depends on temperature. This is confirmed by transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy (ID' /IG ratios are 0.560, 0.579, and 0.684, which correspond to 45, 70, and 95 °C, respectively). In addition, the mechanism of wrinkle control is proved by gold nanoparticles that are grown in polymer dispersant on the PDbS-rGO surface.
Collapse
Affiliation(s)
- Minho Kwon
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| | - Jiyeon Yang
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| | - Hanyoung Kim
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| | - Hyeyoung Joo
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| | - Sang-Woo Joo
- Department of Chemistry Soongsil University 369, Sangdo-ro, Dongjak-gu, Seoul, 06978, Korea
| | - Young Sil Lee
- Industry-Academic Cooperation, Kumoh National Institute of Technology, Gumi, 39177, Korea
| | - Hye Jung Lee
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon, 641-120, Korea
| | - Seung Yol Jeong
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon, 641-120, Korea.,Department of Electro-Functionality Materials Engineering, University of Science and Technology(UST), Daejon, 305-333, Korea
| | - Jong Hun Han
- School of Applied Chemical Engineering Chonnam National University 77, Yongbong-ro, Buk-gu, Gwangju, 500-757, Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| |
Collapse
|
4
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
5
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Humphreys BA, Johnson EC, Wanless EJ, Webber GB. Poly( N-isopropylacrylamide) Response to Salt Concentration and Anion Identity: A Brush-on-Brush Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10818-10830. [PMID: 31339320 DOI: 10.1021/acs.langmuir.9b00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The stability of poly(N-isopropylacrylamide) (PNIPAM) brush-modified colloidal silica particles was compared to asymmetric and symmetric PNIPAM brush direct force measurements in the presence of 1, 10, and 500 mM aqueous salt solution of KCl, KNO3, and KSCN between 10 and 45 °C. Dynamic light scattering measurements highlighted subtle variations in the salt-mediated thermoresponse, while atomic force microscopy (AFM) force curves between a bare silica or PNIPAM brush-modified colloid probe and a planar PNIPAM brush elucidated differences in brush interactions. The AFM force curves in the presence of KCl primarily revealed steric interactions between the surfaces, while KNO3 and KSCN solutions exhibited electrosteric interactions on approach as a function of the chaotropic nature of the ion and the solution concentration. The symmetric PNIPAM brush interaction highlighted significant variations between KCl and KSCN at 1 and 500 mM concentrations, while the approach and retraction force curves were relatively similar at 10 mM concentration. The combination of these techniques enabled the stability of PNIPAM brush-modified colloidal dispersions in the presence of electrolyte to be better understood with specific ion binding and the solution Debye length playing a significant role.
Collapse
Affiliation(s)
- Ben A Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport , University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Edwin C Johnson
- Priority Research Centre for Advanced Particle Processing and Transport , University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport , University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Grant B Webber
- Priority Research Centre for Advanced Particle Processing and Transport , University of Newcastle , Callaghan , NSW 2308 , Australia
| |
Collapse
|
7
|
Humphreys BA, Prescott SW, Murdoch TJ, Nelson A, Gilbert EP, Webber GB, Wanless EJ. Influence of molecular weight on PNIPAM brush modified colloidal silica particles. SOFT MATTER 2018; 15:55-64. [PMID: 30534695 DOI: 10.1039/c8sm01824c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effect of molecular weight and temperature on the phase transition and internal structure of poly(N-isopropylacrylamide) brush modified colloidal silica particles was investigated using dynamic light scattering (DLS) and small angle neutron scattering (SANS) between 15 and 45 °C. Dry particle analysis utilising transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) all confirmed the thickness of the polymer brush shell increased as a function of polymerisation time. Hydrodynamic diameter and electrophoretic mobility results revealed that the brush modified particles transitioned from swollen shells to a collapsed conformation between 15 and 35 °C. The dispersions were electrosterically stabilised over the entire temperature range investigated, with minimal thermal hysteresis recorded. Modelling of the hydrodynamic diameter enabled the calculation of a lower critical solution temperature (LCST) which increased as a function of brush thickness. The internal structure determined via SANS showed a swollen brush at low temperatures (18 and 25 °C) which decayed radially away from the substrate, while a collapsed block-like conformation with 60% polymer volume fraction was present at 40 °C. Radial phase separation was evident at intermediate temperatures (30 and 32.5 °C) with the lower molecular weight sample having a greater volume fraction of polymer in the dense inner region at these temperatures.
Collapse
Affiliation(s)
- Ben A Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | - Timothy J Murdoch
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Andrew Nelson
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Grant B Webber
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
8
|
Feng K, Li S, Feng L, Feng S. Synthesis of thermo- and photo-responsive polysiloxanes with tunable phase separation viaaza-Michael addition. NEW J CHEM 2017. [DOI: 10.1039/c7nj03177g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two kinds of thermo- and photo-dual-responsive polysiloxanes were synthesized through a facile, effective, and catalyst-free aza-Michael addition.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University
- Jinan
- China
| | - Shusheng Li
- Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University
- Jinan
- China
- School of Chemistry and Chemical Engineering, University of Jinan
- Jinan
| | - Linglong Feng
- Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University
- Jinan
- China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University
- Jinan
- China
| |
Collapse
|