1
|
Scott L, Elídóttir K, Jeevaratnam K, Jurewicz I, Lewis R. Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis. Ann N Y Acad Sci 2022; 1515:105-119. [PMID: 35676231 PMCID: PMC9796457 DOI: 10.1111/nyas.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can facilitate improved cardiomyocyte function. In this review, the PICOT question asks, "How has the application of external electrical stimulation in conductive scaffolds for tissue engineering affected cardiomyocyte behavior in in vitro cell culture?" The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, with predetermined inclusion and quality appraisal criteria, were used to assess publications from PubMed, Web of Science, and Scopus. Results revealed carbon nanotubes to be the most common conductive agent in biomaterials and rodent-sourced cell types as the most common cardiomyocytes used. To assess cardiomyocytes, immunofluorescence was used most often, utilizing proteins, such as connexin 43, cardiac α-actinin, and cardiac troponins. It was determined that the modal average stimulation protocol comprised 1-3 V square biphasic 50-ms pulses at 1 Hz, applied toward the end of cell culture. The addition of electrical stimulation to in vitro culture has exemplified it as a powerful tool for cardiac tissue engineering and brings researchers closer to creating optimal artificial cardiac tissue constructs.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| | | | | | | | - Rebecca Lewis
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
2
|
Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019; 119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Manning HG, Niosi F, da Rocha CG, Bellew AT, O'Callaghan C, Biswas S, Flowers PF, Wiley BJ, Holmes JD, Ferreira MS, Boland JJ. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nat Commun 2018; 9:3219. [PMID: 30104665 PMCID: PMC6089893 DOI: 10.1038/s41467-018-05517-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/10/2018] [Indexed: 11/09/2022] Open
Abstract
Nanowire networks are promising memristive architectures for neuromorphic applications due to their connectivity and neurosynaptic-like behaviours. Here, we demonstrate a self-similar scaling of the conductance of networks and the junctions that comprise them. We show this behavior is an emergent property of any junction-dominated network. A particular class of junctions naturally leads to the emergence of conductance plateaus and a "winner-takes-all" conducting path that spans the entire network, and which we show corresponds to the lowest-energy connectivity path. The memory stored in the conductance state is distributed across the network but encoded in specific connectivity pathways, similar to that found in biological systems. These results are expected to have important implications for development of neuromorphic devices based on reservoir computing.
Collapse
Affiliation(s)
- Hugh G Manning
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Fabio Niosi
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Claudia Gomes da Rocha
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Allen T Bellew
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Colin O'Callaghan
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Subhajit Biswas
- Materials Chemistry & Analysis Group, School of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland
| | - Patrick F Flowers
- Department of Chemistry, Duke University, Durham, 27708, North Carolina, USA
| | - Benjamin J Wiley
- Department of Chemistry, Duke University, Durham, 27708, North Carolina, USA
| | - Justin D Holmes
- Materials Chemistry & Analysis Group, School of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland
| | - Mauro S Ferreira
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - John J Boland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
4
|
Large MJ, Ogilvie SP, Alomairy S, Vöckerodt T, Myles D, Cann M, Chan H, Jurewicz I, King AAK, Dalton AB. Selective Mechanical Transfer Deposition of Langmuir Graphene Films for High-Performance Silver Nanowire Hybrid Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12038-12045. [PMID: 28961004 DOI: 10.1021/acs.langmuir.7b02799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we present silver nanowire hybrid electrodes prepared through the addition of small quantities of pristine graphene by mechanical transfer deposition from surface-assembled Langmuir films. This technique is a fast, efficient, and facile method for modifying the optoelectronic performance of AgNW films. We demonstrate that it is possible to use this technique to perform two-step device production by selective patterning of the stamp used, leading to controlled variation in the local sheet resistance across a device. This is particularly attractive for producing extremely low cost sensors on arbitrarily large scales. Our aim is to address some of the concerns surrounding the use of AgNW films as replacements for indium tin oxide (ITO), namely, the use of scarce materials and poor stability of AgNWs against flexural and environmental degradation.
Collapse
Affiliation(s)
- Matthew J Large
- University of Sussex , Falmer, Brighton BN1 9RH, United Kingdom
| | - Sean P Ogilvie
- University of Sussex , Falmer, Brighton BN1 9RH, United Kingdom
| | - Sultan Alomairy
- Taif University , Taif 26571, Saudi Arabia
- University of Surrey , Guildford GU2 7XH, United Kingdom
| | | | - David Myles
- M-Solv Ltd, Oxonian Park, Kidlington, Oxfordshire OX5 1FP, United Kingdom
| | - Maria Cann
- M-Solv Ltd, Oxonian Park, Kidlington, Oxfordshire OX5 1FP, United Kingdom
| | - Helios Chan
- M-Solv Ltd, Oxonian Park, Kidlington, Oxfordshire OX5 1FP, United Kingdom
| | | | - Alice A K King
- University of Sussex , Falmer, Brighton BN1 9RH, United Kingdom
| | - Alan B Dalton
- University of Sussex , Falmer, Brighton BN1 9RH, United Kingdom
| |
Collapse
|
5
|
Bellet D, Lagrange M, Sannicolo T, Aghazadehchors S, Nguyen VH, Langley DP, Muñoz-Rojas D, Jiménez C, Bréchet Y, Nguyen ND. Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration. MATERIALS 2017; 10:ma10060570. [PMID: 28772931 PMCID: PMC5552077 DOI: 10.3390/ma10060570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks.
Collapse
Affiliation(s)
- Daniel Bellet
- Université Grenoble Alpes, CNRS, Grenoble INP 1 (Institute of Engineering Uni. Grenoble Alpes), LMGP, F-38000 Grenoble, France.
| | - Mélanie Lagrange
- Université Grenoble Alpes, CNRS, Grenoble INP 1 (Institute of Engineering Uni. Grenoble Alpes), LMGP, F-38000 Grenoble, France.
| | - Thomas Sannicolo
- Université Grenoble Alpes, CNRS, Grenoble INP 1 (Institute of Engineering Uni. Grenoble Alpes), LMGP, F-38000 Grenoble, France.
- Université Grenoble Alpes, CEA, LITEN, F-38054 Grenoble, France.
| | - Sara Aghazadehchors
- Université Grenoble Alpes, CNRS, Grenoble INP 1 (Institute of Engineering Uni. Grenoble Alpes), LMGP, F-38000 Grenoble, France.
- Département de Physique, Université de Liège, CESAM/Q-MAT, SPIN, B-4000 Liège, Belgium.
| | - Viet Huong Nguyen
- Université Grenoble Alpes, CNRS, Grenoble INP 1 (Institute of Engineering Uni. Grenoble Alpes), LMGP, F-38000 Grenoble, France.
- CEA-INES, LITEN, 50 Avenue du Lac Léman, F-73375 Le Bourget-du-Lac, France.
| | - Daniel P Langley
- ARC Centre of Excellence for Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - David Muñoz-Rojas
- Université Grenoble Alpes, CNRS, Grenoble INP 1 (Institute of Engineering Uni. Grenoble Alpes), LMGP, F-38000 Grenoble, France.
| | - Carmen Jiménez
- Université Grenoble Alpes, CNRS, Grenoble INP 1 (Institute of Engineering Uni. Grenoble Alpes), LMGP, F-38000 Grenoble, France.
| | - Yves Bréchet
- Université Grenoble Alpes, CNRS, Grenoble INP 1, SIMAP, F-38000 Grenoble, France.
| | - Ngoc Duy Nguyen
- Département de Physique, Université de Liège, CESAM/Q-MAT, SPIN, B-4000 Liège, Belgium.
| |
Collapse
|