1
|
Du J, Tong H, Chen J, Zhang Q, Liao S. Encapsulating Cu NCs with aggregation-induced emission into metal-organic framework ZIF-8 as a novel fluorescent nanoprobe for the highly sensitive detection of felodipine. Analyst 2025; 150:1807-1815. [PMID: 40183212 DOI: 10.1039/d4an01506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Fluorescent metal-organic framework nanocomposites (f-MOFs) have been gaining increasing attention in the fields of chemosensors and biosensors due to their unique signal amplification mechanisms and improved selectivity. However, most f-MOFs are constructed by encapsulating fluorescent labelling agents into frameworks via host-guest interactions. The notorious aggregation-caused quenching effect of these fluorescent labelling agents often leads to a decreased fluorescent quantum yield in f-MOFs. Herein, a novel fluorescent nanocomposite, Cu NCs@ZIF-8, was designed and prepared by encapsulating copper nanoclusters (Cu NCs) with aggregation-induced emission (AIE) effects into zeolitic imidazolate framework ZIF-8 through electrostatic attraction. Owing to the AIE effect of Cu NCs and the spatial confinement of ZIF-8, the intramolecular motion of surface ligand hydrolipidic acid (DHLA) in Cu NCs was restricted, resulting in the formation of a highly emissive nanocomposite, Cu NCs@ZIF-8. Intriguingly, the UV-Vis absorption spectrum of felodipine overlaps with the excitation spectrum of Cu NCs@ZIF-8. Therefore, a novel fluorescent nanoprobe based on Cu NCs@ZIF-8 was developed for the highly sensitive detection of felodipine via the inner-filtration effect mechanism. Under optimal detection conditions, the linear response range of Cu NCs@ZIF-8 for felodipine was found to be 1-25 μM, with a detection of limit of 0.09 μM. While determining the labelling-amount percentage in commercially available felodipine tablets, the experimental results validated that the proposed Cu NCs@ZIF-8 nanoprobe exhibits good selectivity and excellent accuracy. This expands the potential applications of fluorescent metal-organic frameworks encapsulated with metal nanoclusters exhibiting AIE properties, positioning them as fluorescent nanoprobes for pharmaceutical quality control.
Collapse
Affiliation(s)
- Juan Du
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| | - Huixiao Tong
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| | - Jinwen Chen
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| | - Qikun Zhang
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| | - Shenghua Liao
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| |
Collapse
|
2
|
Liu W, Liu Q, Wang D, Tang BZ. Fluorescent Porous Materials Based on Aggregation-induced Emission for Biomedical Applications. ACS NANO 2024; 18:27206-27229. [PMID: 39344127 DOI: 10.1021/acsnano.4c08882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fluorescent porous materials based on aggregation-induced emission (AIE) are growing into a sparkling frontier in biomedical applications. Exploring those materials represents a win-win integration and has recently progressed at a rapid pace, mainly benefiting from intrinsic advantages including tunable pore size and structure, strong guest molecule encapsulation ability, superior biocompatibility, and photophysical outcomes. With the great significance and rapid progress in this area, this review provides an integrated picture on AIE luminogen-based porous materials. It encompasses inorganic, organic, and inorganic-organic porous materials, exploring fundamental concepts and the relationship between AIE performance and material design and highlighting significant breakthroughs and the latest trends in biomedical applications. In addition, some critical challenges and future perspectives in the development of AIE luminogen-based porous materials are also discussed.
Collapse
Affiliation(s)
- Wanlu Liu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
3
|
Song M, Yu R, Shang Y, Tashpulatov K, Sun H, Zeng J. Lanthanide metal-organic frameworks as ratiometric fluorescent probes for real-time monitoring of PFOA photocatalytic degradation process. CHEMOSPHERE 2024; 363:142946. [PMID: 39059635 DOI: 10.1016/j.chemosphere.2024.142946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The assessment of perfluorooctanoic acid (PFOA) photocatalytic degradation usually involves tedious pre-treatment and sophisticated instrumentation, making it impractical to evaluate the degradation process in real-time. Herein, we synthesized a series of lanthanide metal-organic frameworks (Ln-MOFs) with outstanding fluorescent sensing properties and applied them as luminescent probes in the photocatalytic degradation reaction of PFOA for real-time evaluation. As the catalytic reaction proceeds, the fluorescence color changes significantly from green to orange-red due to the different interaction mechanisms between the electron-deficient PFOA and smaller radius F- with the ratiometric fluorescent probe MOF-76 (Tb: Eu = 29:1). The limit of detection (LOD) was calculated to be 0.0127 mM for PFOA and 0.00746 mM for F-. In addition, the conversion rate of the catalytic reaction can be read directly based on the chromaticity value by establishing a three-dimensional relationship graph of G/R value-conversion rate-time (G/R indicates the ratio between green and red luminance values in the image.), allowing for real-time and rapid tracking of the PFOA degradation. The recoveries of PFOA and F- in the actual water samples were 99.3-102.7% (RSD = 2.2-4.4%) and 100.7-105.3% (RSD = 3.9-6.8%), respectively. Both theoretical calculations and experiments reveal that the detection mechanism was attributed to the photoinduced electron transfer and energy transfer between the analytes and the probe. This method simplifies the sample analysis process and avoids the use of bulky instruments, and thus has great potential on the design and development of quantitative time-resolved visualization methods to assess catalytic performance and reveal mechanisms.
Collapse
Affiliation(s)
- Mingzhe Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | - Ruyue Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | - Yanxue Shang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | | | - Hongman Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China.
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China.
| |
Collapse
|
4
|
Deng S, Liu J, Han D, Yang X, Liu H, Zhang C, Blecker C. Synchronous fluorescence detection of nitrite in meat products based on dual-emitting dye@MOF and its portable hydrogel test kit. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132898. [PMID: 37939561 DOI: 10.1016/j.jhazmat.2023.132898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
A novel ratiometric fluorescent nanoprobe (Rh6G@UIO-66-NH2) was fabricated for efficient nitrite (NO2-) detection in the present study. When NO2- was introduced, it interacted with the amino groups on the surface of Rh6G@UIO-66-NH2, forming diazonium salts that led to the quenching of blue fluorescence. With this strategy, a good linear relationship between NO2- concentration and the fluorescent intensity ratio of the nanoprobe in the range of 1-100 μM was established, with a detection limit of 0.021 μM. This dual-readout nanosensor was applied to analyze the concentration of NO2- in real meat samples, achieving satisfactory recovery rates of 94.72-104.52%, highlighting the practical potential of this method. Furthermore, a portable Gel/Rh6G@UIO-66-NH2 hydrogel test kit was constructed for on-spot dual-mode detection of NO2-. This kit allows for convenient colorimetric analysis and fluorometric detection when used in conjunction with a smartphone. All the photos taken with the portable kit was converted into digital information using ImageJ software. It provides colorimetric and fluorescent visual detection of NO2- over a range of 0.1-1.5 mM, achieving a direct quantitative tool for NO2- identification. This methodology presents a promising strategy for NO2- detection and expands the application prospects for on-spot monitoring of food safety assessment.
Collapse
Affiliation(s)
- Siyang Deng
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Junmei Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinting Yang
- Research Center for Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Huan Liu
- Research Center for Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| |
Collapse
|
5
|
Wang L, Wang T, Wu G, Tian D. An HDBB-based fluorescent probe for the sensitive detection of human serum albumin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:427-433. [PMID: 38165671 DOI: 10.1039/d3ay01733h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The detection of human serum albumin (HSA) in bodily fluids is of great significance in the biomedical area because HSA in bodily fluids is commonly used as a biomarker for the early diagnosis of diseases. To detect HSA, we employed HDBB, 4,4'-(hydrazine-1,2-diylidene bis(methanylylidene)) bis(3-hydroxybenzoic acid), as a fluorescent probe with a large Stokes shift. HDBB had obvious excited state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) features. We elucidated the ESIPT characteristics of HDBB through the DFT approach. We also performed a molecular docking simulation between HDBB and HSA, showing that HDBB primarily bonded to HSA via hydrophobic force and hydrogen bonds. The FL intensities of HDBB with HSA concentrations had a linear range of 0.01-0.2 mg mL-1 (R2 = 0.9995), and the LOD was 1.104 μg mL-1. We also used the probe to detect HSA in urine, with spiked recoveries of 98.10-105.33%. Given its high selectivity and feasible synthesis, HDBB has potential applications in detecting HSA in real biological systems.
Collapse
Affiliation(s)
- Liwen Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China.
| | - Tengfei Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China.
| | - Guang Wu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China.
| | - Dating Tian
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China.
| |
Collapse
|
6
|
Wei W, Ze H, Qiu Z. Reticular sensing materials with aggregation-induced emission characteristics. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Zhai X, Cui Z, Shen W. Mechanism, structural design, modulation and applications of Aggregation-induced emission-based Metal-organic framework. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Huang M, Wang Z, Ma Z, Yang J. R-D-A and R-D-π-A Structured AIEgens: Relationship between Electronic, Conformational Characteristics and Photophysical Properties. J Phys Chem B 2022; 126:3082-3089. [PMID: 35417159 DOI: 10.1021/acs.jpcb.1c10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The design of new aggregation-induced emission luminogens (AIEgens) has aroused continuous attention. The relationship between structure and performance plays an important role in guiding such efforts. In this contribution, two R-D-A- and R-D-π-A-type AIEgens were facilely designed and synthesized, that is, DPE-PTZ-CN and DPE-PTZ-PCN, with diphenylethylene as the twisted rotor structure (R), phenothiazine as electron-donor (D), and the (aryl) cyano group as electron-acceptor (A) fragments. Both luminophores were endowed with typical AIE properties, while their αAIE (PL intensity ratio of AIEgen in a mixed solution with water fraction (fw) = 90 vol % to that with fw = 0) were quite different. The αAIE for DPE-PTZ-CN was as high as 41, but it was only 3 for DPE-PTZ-PCN, in which the π-bridge (aryl linker) was introduced between its D and A groups. In addition, the push-pull electronic effect endowed both molecules with the feature of intramolecular charge transfer (ICT). The solvatochromism effect observed in solutions with different polarities confirmed the existence of the ICT process. The theoretical calculation and single crystal structure analysis revealed that the electronic structure and molecular conformation characteristics had a decisive influence on the differences in photophysical behaviors.
Collapse
Affiliation(s)
- Mingming Huang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhijian Wang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiping Yang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
10
|
Meti P, Gong YD. Unveiling the structure-property relationship of X-shaped pyrazine-based D-A type luminophores with tunable aggregation-induced emission. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Cai J, Ma W, Hao C, Sun M, Guo J, Xu L, Xu C, Kuang H. Artificial light-triggered smart nanochannels relying on optoionic effects. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Shu Y, Ye Q, Dai T, Xu Q, Hu X. Encapsulation of Luminescent Guests to Construct Luminescent Metal-Organic Frameworks for Chemical Sensing. ACS Sens 2021; 6:641-658. [PMID: 33571406 DOI: 10.1021/acssensors.0c02562] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal-organic frameworks (MOFs), which are a class of coordination polymers constructed by metal ions or clusters with organic ligands, have emerged as exciting inorganic-organic hybrid materials with the superiorities of inherent crystallinity, adjustable pore size, clear structure, and high degree of functionalization. The MOFs have attracted much attention to develop good luminescent functional materials due to their inherent luminescent centers of both inorganic and organic photonic units. Furthermore, the pores within MOFs can also be used to encapsulate a large number of luminescent guest species, which provides a broader luminescent property for MOF materials. MOFs possess the incomparable multifunctional advantages of inorganic and organic luminescent materials. A large number of luminescent MOFs (LMOFs) have been synthesized for applications in sensing, white-light-emitting diodes (LED), photocatalysis, biomedicine, etc. This paper reviews the encapsulation of various luminescent guests such as lanthanide ions, dyes, quantum dots, and luminescent complexes in metal-organic frameworks to construct luminous sensors with single- or double-emission centers, as well as the research progress of these sensors in chemical sensing. Finally, the challenges in these fields were outlined and the prospects for future development were put forward.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Tao Dai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
13
|
Zhu L, Zhu B, Luo J, Liu B. Design and Property Modulation of Metal–Organic Frameworks with Aggregation-Induced Emission. ACS MATERIALS LETTERS 2021; 3:77-89. [DOI: 10.1021/acsmaterialslett.0c00477] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Longyi Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
14
|
Chen B, Jiang T, Fu H, Qu X, Xu Z, Zheng S. Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Anal Chim Acta 2020; 1145:95-102. [PMID: 33453886 DOI: 10.1016/j.aca.2020.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
The development of a rapid and sensitive method for the detection of fluoride ion (F-) in aqueous systems is of great significance for human health and environmental monitoring. In this study, a zirconium porphyrinic luminescent metal-organic framework (LMOF), PCN-222, was employed as a novel fluorescent probe for the ultrasensitive, rapid and selective detection of F- in water. The PCN-222 probe was prepared by a facile solvothermal method. It exhibited good fluorescence stability and was highly stable in water. The fluorescence emission of PCN-222 could be effectively and selectively quenched by F- due to the strong coordination affinity of F- to the zirconium clusters in PCN-222. The proposed fluorescence method for F- detection based on PCN-222 probe afforded a linear response range of 1-20 μmol/L and a very low detection limit (0.048-0.065 μmol/L) in reference to many reported F- fluorescent probes. Moreover, a rapid response time (<10 s) was obtained due to the open and uniform pore structure of PCN-222 that allowed the fast diffusion of F- to interact with the zirconium recognition sites. Finally, the PCN-222 probe was successfully applied for the fluorescence detection of F- in real water samples. These results highlight the great application potential of LMOF in the sensing fields.
Collapse
Affiliation(s)
- Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Tingting Jiang
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| |
Collapse
|
15
|
Xu J, Zhu P, Wang Y, Zhang KL. Multi-responsive luminescence sensing behaviour of a pair of temperature-dependent Cd(II) coordination polymers. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ruan B, Yang J, Zhang YJ, Ma N, Shi D, Jiang T, Tsai FC. UiO-66 derivate as a fluorescent probe for Fe3+ detection. Talanta 2020; 218:121207. [DOI: 10.1016/j.talanta.2020.121207] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023]
|
17
|
Ruan B, Liu HL, Xie L, Ding H, Zhang Y, Wu J, Huang Z, Shi D, Jiang T, Tsai FC. The Fluorescence Property of Zirconium-Based MOFs Adsorbed Sulforhodamine B. J Fluoresc 2020; 30:427-435. [PMID: 32314138 DOI: 10.1007/s10895-020-02531-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Sulforhodamine B (SRB) is widely utilized for cell staining and laser field. But its application is limited by aggregation-caused quenching (ACQ). In this work, we evaluated the use of UiO-66 and UiO-67 of Zr-based metal organic frameworks (Zr-MOFs) as the host to adsorb SRB molecules due to the high stabily and good loading capacity of Zr-MOFs. The fluorescence properties of the compounds were then discussed respectively. Due to the aperture difference between UiO-66 and UiO-67, they showed distinct fluorescence properties after loading SRB. When the concentration reaches 5 ppm, fluorescence quenching begins to occur in SRB@UiO-66, while it occurs in SRB@UiO-67 at 2 ppm. The solution of quenching phenomenon could open new avenues for the extensive use of SRB.
Collapse
Affiliation(s)
- Bo Ruan
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Huan-Li Liu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Lei Xie
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Hui Ding
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Ya Zhang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jin Wu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zhe Huang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Dean Shi
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Tao Jiang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fang-Chang Tsai
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
18
|
Ma X, Zhang J, Zhang Y, Liu J. Adsorption Promoted Aggregation-Induced Emission Showing Strong Dye Lateral Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16304-16311. [PMID: 31702160 DOI: 10.1021/acs.langmuir.9b02823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation-induced emission (AIE) is a powerful method to produce fluorescence for a diverse range of applications. While most previous work induced aggregation by change of solvent, ionic strength, pH, or self-assembly, we herein explored adsorption-induced aggregation using 4,4'-(hydrazine-1,2-diylidene bis(methanylylidene)) bis(3-hydroxybenzoic acid) (HDBB) as an AIE luminogen. HDBB is known to aggregate with AIE at low pH but not at neutral pH, and its aggregation facilitates excited state intramolecular proton transfer for enhanced emission. Using a nonquenching nanomaterial, Y2O3 nanoparticles, HDBB showed sevenfold fluorescence increase at pH 7.0. Fluorescence lifetime showed that HDBB was in the aggregated state in the presence of Y2O3. For comparison, a fluorescent porphyrin compound showed that adsorption caused quenching after mixing with Y2O3, whereas other dyes such as fluorescein, calcein, and rhodamine B failed to be adsorbed by Y2O3. Adsorption did not follow a Langmuir isotherm, but it showed strong lateral HDBB interactions because adsorption was only achieved with a high concentration of HDBB. Adsorption was inhibited by salt and by phosphate, indicating the importance of electrostatic and metal-binding interactions. Comparisons were made with other nanomaterials, where graphene oxide and CeO2 quenched HDBB and a cationic liposome also enhanced its emission, although with a less red-shifted peak wavelength. This study provides a simple method to induce aggregation of an AIE dye and its aggregation in turn-enhanced adsorption.
Collapse
Affiliation(s)
- Xuejuan Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Chang'an West Road 620 , Xi'an , Shaanxi 710119 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Jinyi Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Chang'an West Road 620 , Xi'an , Shaanxi 710119 , China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
19
|
Rasheed T, Nabeel F. Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213065] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Mi X, Sheng D, Yu Y, Wang Y, Zhao L, Lu J, Li Y, Li D, Dou J, Duan J, Wang S. Tunable Light Emission and Multiresponsive Luminescent Sensitivities in Aqueous Solutions of Two Series of Lanthanide Metal-Organic Frameworks Based on Structurally Related Ligands. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7914-7926. [PMID: 30720269 DOI: 10.1021/acsami.8b18320] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two series of lanthanide metal-organic frameworks (Ln-MOFs) from two structurally related flexible carboxylate-based ligands were solvothermally synthesized. H3L2 with additional -CH2- group provides more flexibility and different coordination modes and conformations compared with H3L1. As a result, 2-Ln MOFs are modulated from two-dimensional kgd of 1-Ln to three-dimensional rtl topological frameworks and further achieve enhanced chemical stability. The Eu- and Tb-MOFs exhibit strong fluorescent emission at the solid state because of the antenna effect of the ligands. Interestingly, the emissions can be tuned by simply doping Eu3+ and Tb3+ of different concentrations within the Eu xTb1- x MOFs. Notably, 2-Ln MOFs realize nearly white light emission by means of a trichromatic approach (red of Eu(III), green of Tb(III), and blue of the H3L2 ligand). Furthermore, 2-Ln MOFs also exhibit water stability and demonstrate high selective and sensitive sensing activities toward Fe(III) and Cr(VI) in aqueous solutions. The results further highlight the importance of the ligand flexibility on tuning MOF structures with improved structural stability and ion-sensing properties.
Collapse
Affiliation(s)
- Xiuna Mi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Dafei Sheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Yu'e Yu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Yuhao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Limin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059 , P.R. China
| |
Collapse
|
21
|
Li K, Lin Y, Lu C. Aggregation-Induced Emission for Visualization in Materials Science. Chem Asian J 2019; 14:715-729. [PMID: 30629327 DOI: 10.1002/asia.201801760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Fluorescent imaging techniques have attracted much attention as a powerful tool to realize the visualization of structural and morphological evolution of various materials. However, the traditional fluorescent dyes usually suffered from aggregation-caused quenching, which severely limits the visualization results. In contrast, aggregation-induced emission (AIE) molecules with high quantum yields in the condensed state showed great opportunities for imaging techniques. In this feature article, recent progresses in visualization with AIE molecules are discussed. Assembly processes including crystallization, gelation process, and dissipative assembly have been observed. To better study information obtained regarding the processes, visualization during reactions, phase transitions, and molecular motions are successfully presented. Based on these successes, AIE molecules were further applied for phase recognition, macro-dispersion evaluation, and damage detection. Finally, we also present the outlook and perspectives, in our opinion, for the development of visualization by AIE molecules.
Collapse
Affiliation(s)
- Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| |
Collapse
|
22
|
Ying YL, Li YJ, Mei J, Gao R, Hu YX, Long YT, Tian H. Manipulating and visualizing the dynamic aggregation-induced emission within a confined quartz nanopore. Nat Commun 2018; 9:3657. [PMID: 30194303 PMCID: PMC6128826 DOI: 10.1038/s41467-018-05832-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/26/2018] [Indexed: 11/18/2022] Open
Abstract
Aggregation-induced emission (AIE) as a unique photophysical process has been intensively explored for their features in fields from optical sensing, bioimaging to optoelectronic devices. However, all AIE luminogens (AIEgens) hardly recover into the initial dispersed state after illuminating at the ultimate aggregated state, which limits AIEgens to achieve reversible sensing and reproducible devices. To real-time manipulate the emission of AIEgen, here we take the advantage of confined space in the quartz nanopore to achieve a nanopore-size-dependent restriction of AIEgens for reversible conversions of “on-to-off” and “off-to-on” emission. By electrochemically manipulating 26 fL AIEgen solution inside nanopore confinement, AIE illuminates while moves along nanopore from the constricted tip to inside cavity at a velocity of 1.4–2.2 μm s−1, and vice versa. We further apply this dynamic manipulation for a target delivery of AIEgen into single cells, which opens up new possibility to design powerful and practical AIE applications. The difficulty in recovering the aggregation-induced emission fluorogens (AIEgens) to the initial dispersed state upon illuminating has limited their applications. Here, the authors employ the confined space in the quartz nanopore to achieve a nanopore-size dependent restriction of AIEgens.
Collapse
Affiliation(s)
- Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China.
| | - Yuan-Jie Li
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ju Mei
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Rui Gao
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Yong-Xu Hu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
23
|
Huang W, Bender M, Seehafer K, Wacker I, Schröder RR, Bunz UHF. A Tetraphenylethene-Based Polymer Array Discriminates Nitroarenes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02590] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Wei Huang
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Irene Wacker
- Cryo
Electron Microscopy, Universitätsklinikum Heidelberg, BioQuant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
- CAM,
Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Rasmus R. Schröder
- Cryo
Electron Microscopy, Universitätsklinikum Heidelberg, BioQuant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
- CAM,
Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- CAM,
Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Zhang Y, Yuan S, Day G, Wang X, Yang X, Zhou HC. Luminescent sensors based on metal-organic frameworks. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.06.007] [Citation(s) in RCA: 684] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|