1
|
Hong S, Kim D, Kim J, Park J, Rho S, Huh J, Lee Y, Jeong K, Cho M. Enhanced Photocharacteristics by Fermi Level Modulating in Sb 2 Te 3 /Bi 2 Se 3 Topological Insulator p-n Junction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307509. [PMID: 38161227 PMCID: PMC10953576 DOI: 10.1002/advs.202307509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Topological insulators have recently received attention in optoelectronic devices because of their high mobility and broadband absorption resulting from their topological surface states. In particular, theoretical and experimental studies have emerged that can improve the spin generation efficiency in a topological insulator-based p-n junction structure called a TPNJ, drawing attention in optospintronics. Recently, research on implementing the TPNJ structure is conducted; however, studies on the device characteristics of the TPNJ structure are still insufficient. In this study, the TPNJ structure is effectively implemented without intermixing by controlling the annealing temperature, and the photocharacteristics appearing in the TPNJ structure are investigated using a cross-pattern that can compare the characteristics in a single device. Enhanced photo characteristics are observed for the TPNJ structure. An optical pump Terahertz probe and a physical property measurement system are used to confirm the cause of improved photoresponsivity. Consequently, the photocharacteristics are improved owing to the change in the absorption mechanism and surface transport channel caused by the Fermi level shift in the TPNJ structure.
Collapse
Affiliation(s)
- Seok‐Bo Hong
- Department of PhysicsYonsei University50 Yonsei‐roSeoul03722Republic of Korea
| | - Dajung Kim
- Department of PhysicsYonsei University50 Yonsei‐roSeoul03722Republic of Korea
| | - Jonghoon Kim
- Department of PhysicsYonsei University50 Yonsei‐roSeoul03722Republic of Korea
| | - Jaehan Park
- Department of PhysicsYonsei University50 Yonsei‐roSeoul03722Republic of Korea
| | - Seungwon Rho
- Department of PhysicsYonsei University50 Yonsei‐roSeoul03722Republic of Korea
| | - Jaeseok Huh
- Department of PhysicsYonsei University50 Yonsei‐roSeoul03722Republic of Korea
| | - Youngmin Lee
- Department of PhysicsYonsei University50 Yonsei‐roSeoul03722Republic of Korea
| | - Kwangsik Jeong
- Division of Physics and Semiconductor ScienceDongguk UniversitySeoul04620Republic of Korea
| | - Mann‐Ho Cho
- Department of PhysicsYonsei University50 Yonsei‐roSeoul03722Republic of Korea
- Department of System Semiconductor EngineeringYonsei University50 Yonsei‐roSeoul03722Republic of Korea
| |
Collapse
|
2
|
Singh Y, Parmar R, Srivastava A, Yadav R, Kumar K, Rani S, Srivastava SK, Husale S, Sharma M, Kushvaha SS, Singh VN. Highly Responsive Near-Infrared Si/Sb 2Se 3 Photodetector via Surface Engineering of Silicon. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326513 DOI: 10.1021/acsami.3c04043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of imaging technology and optical communication demands a photodetector with high responsiveness. As demonstrated by microfabrication and nanofabrication technology advancements, recent progress in plasmonic sensor technologies can address this need. However, these photodetectors have low optical absorption and ineffective charge carrier transport efficiency. Sb2Se3 is light-sensitive material with a high absorption coefficient, making it suitable for photodetector applications. We developed an efficient, scalable, low-cost near-infrared (NIR) photodetector based on a nanostructured Sb2Se3 film deposited on p-type micropyramidal Si (made via the wet chemical etching process), working on photoconductive phenomena. Our results proved that, at the optimized thickness of the Sb2Se3 layer, the proposed Si micropyramidal substrate enhanced the responsivity nearly two times, compared with that of the Sb2Se3 deposited on a flat Si reference sample and a glass/Sb2Se3 sample at 1064 nm (power density = 15 mW/cm2). More interestingly, the micropyramidal silicon-based device worked at 0 V bias, paving a path for self-bias devices. The highest specific detectivity of 2.25 × 1015 Jones was achieved at 15 mW/cm2 power density at a bias voltage of 0.5 V. It is demonstrated that the enhanced responsivity was closely linked with field enhancement due to the Kretschmann configuration of Si pyramids, which acts as hot spots for Si/Sb2Se3 junction. A high responsivity of 47.8 A W-1 proved it suitable for scalable and cost-effective plasmonic-based NIR photodetectors.
Collapse
Affiliation(s)
- Yogesh Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Rahul Parmar
- Elettra Sincrotrone, s.s. 14 km 163,500 in Area Science Park, 34149, Basovizza Trieste Italy
| | - Avritti Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Reena Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Kapil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Sanju Rani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Sanjay K Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Sudhir Husale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Mahesh Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Sunil Singh Kushvaha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Vidya Nand Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| |
Collapse
|
3
|
He J, Tao L, Zhang H, Zhou B, Li J. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. NANOSCALE 2019; 11:2577-2593. [PMID: 30693933 DOI: 10.1039/c8nr09368g] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ultrafast fiber lasers have significant applications in ultra-precision manufacturing, medical diagnostics, medical treatment, precision measurement and astronomical detection, owing to their ultra-short pulse width and ultra-high peak-power. Since graphene was first explored as an optical saturable absorber for passively mode-locked lasers in 2009, many other 2D materials beyond graphene, including phosphorene, antimonene, bismuthene, transition metal dichalcogenides (TMDs), topological insulators (TIs), metal-organic frameworks (MOFs) and MXenes, have been successively explored, resulting in rapid development of novel 2D materials-based saturable absorbers. Herein, we review the latest progress of the emerging 2D materials beyond graphene for passively mode-locked fiber laser application. These 2D materials are classified into mono-elemental, dual-elemental and multi-elemental 2D materials. The atomic structure, band structure, nonlinear optical properties, and preparation methods of 2D materials are summarized. Diverse integration strategies for applying 2D materials into fiber laser systems are introduced, and the mode-locking performance of the 2D materials-based fiber lasers working at 1-3 μm are discussed. Finally, the perspectives and challenges facing 2D materials-based mode-locked fiber lasers are highlighted.
Collapse
Affiliation(s)
- Junshan He
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
| | | | | | | | | |
Collapse
|
4
|
Yu J, Zeng X, Zhang L, He K, Cheng S, Lai Y, Huang W, Chen Y, Yin C, Xue Q. Photoinduced Inverse Spin Hall Effect of Surface States in the Topological Insulator Bi 2Se 3. NANO LETTERS 2017; 17:7878-7885. [PMID: 29141404 DOI: 10.1021/acs.nanolett.7b04172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The three-dimensional (3D) topological insulator (TI) Bi2Se3 exhibits topologically protected, linearly dispersing Dirac surface states (SSs). To access the intriguing properties of these SSs, it is important to distinguish them from the coexisting two-dimensional electron gas (2DEG) on the surface. Here, we use circularly polarized light to induce the inverse spin Hall effect in a Bi2Se3 thin film at different temperatures (i.e., from 77 to 300 K). It is demonstrated that the photoinduced inverse spin Hall effect (PISHE) of the top SSs and the 2DEG can be separated based on their opposite signs. The temperature and power dependence of the PISHE also confirms our method. Furthermore, it is found that the PISHE in the 2DEG is dominated by the extrinsic mechanism, as revealed by the temperature dependence of the PISHE.
Collapse
Affiliation(s)
- Jinling Yu
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University , Fuzhou 350108, Fujian, China
| | - Xiaolin Zeng
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University , Fuzhou 350108, Fujian, China
| | - Liguo Zhang
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University , Beijing 100084, China
| | - Ke He
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University , Beijing 100084, China
| | - Shuying Cheng
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University , Fuzhou 350108, Fujian, China
- Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University , Changzhou 213164, Jiangsu China
| | - Yunfeng Lai
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University , Fuzhou 350108, Fujian, China
- Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University , Changzhou 213164, Jiangsu China
| | - Wei Huang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
| | - Yonghai Chen
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Chunming Yin
- School of Physics, University of New South Wales , Sydney, New South Wales 2052, Australia
- CAS Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei 230026, China
| | - Qikun Xue
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University , Beijing 100084, China
| |
Collapse
|