1
|
Wei XH, Xue YW, Liu X, Wang XH, Wang YB, Su Q. Interrupted Michael Reaction: Sulfophosphinoylation of α,β-Unsaturated Ketones Catalyzed by Phosphine. J Org Chem 2024; 89:16564-16570. [PMID: 39478284 DOI: 10.1021/acs.joc.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An efficient method for phosphine-catalyzed sulfophosphinoylation of α,β-unsaturated ketones for synthesis allylic organophosphorus compounds has been reported, in which α,β-unsaturated compounds acting as zwitterions react with electrophiles and nucleophiles to form a C-P bond and a C-O bond and obtain allylic organophosphorus with high regio- and stereoselectivity in moderate to excellent yields.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Ya-Wen Xue
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Xuan Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Xiao-Hong Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Yan-Bin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| |
Collapse
|
2
|
Wang XH, Xue YW, Bai CY, Wang YB, Wei XH, Su Q. Three-Component Direct Phosphorylation of Aldehydes and Alkylation of Ketones: Synthesis of γ-Ketophosphine Oxides under Acidic Conditions. J Org Chem 2023; 88:16216-16228. [PMID: 37967376 DOI: 10.1021/acs.joc.3c01674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
An effective and economical acid-promoted three-component reaction for the construction of C-P and C-C bonds for the synthesis of γ-ketophosphine oxides with water as the only byproduct was developed. Detailed mechanistic experiments confirmed that the reaction proceeds by phospha-aldol elimination, in which a benzylic carbocation is generated from the phosphorylation of aldehydes, which then reacts with ketone enolates under acidic conditions.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Ya-Wen Xue
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Chun-Yuan Bai
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Yan-Bin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| |
Collapse
|
3
|
Ying Y, Ye Z, Wang A, Chen X, Meng S, Xu P, Gao Y, Zhao Y. Nickel-Catalyzed Radical Ring-Opening Phosphorylation of Cycloalkyl Hydroperoxides Leading to Distal Acylphosphine Oxides. Org Lett 2023; 25:928-932. [PMID: 36729387 DOI: 10.1021/acs.orglett.2c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A facile and efficient nickel-catalyzed C-C bond cleavage/phosphorylation of various cycloalkyl hydroperoxides was developed. This radical ring-opening strategy provided practical access to structurally diverse distal ketophosphine oxides in one pot through concurrent C═O/C-P bond formation with high atom economy under mild room temperature and base-free conditions.
Collapse
Affiliation(s)
- Yue Ying
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Ziyi Ye
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - An Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xingjie Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Pengxiang Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yufen Zhao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
4
|
Conti R, Widera A, Müller G, Fekete C, Thöny D, Eiler F, Benkő Z, Grützmacher H. Organocatalyzed Phospha-Michael Addition: A Highly Efficient Synthesis of Customized Bis(acyl)phosphane Oxide Photoinitiators. Chemistry 2023; 29:e202202563. [PMID: 36200550 PMCID: PMC10100105 DOI: 10.1002/chem.202202563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/05/2022]
Abstract
Addition of the P-H bond in bis(mesitoyl)phosphine, HP(COMes)2 (BAPH), to a wide variety of activated carbon-carbon double bonds as acceptors was investigated. While this phospha-Michael addition does not proceed in the absence of an additive or catalyst, excellent results were obtained with stoichiometric basic potassium or caesium salts. Simple amine bases can be employed in catalytic amounts, and tetramethylguanidine (TMG) in particular is an outstanding catalyst that allows the preparation of bis(acyl)phosphines, R-P(COMes)2 , under very mild conditions in excellent yields after only a short time. All phosphines RP(COMes)2 can subsequently be oxidized to the corresponding bis(acyl)phosphane oxides, RPO(COMes)2 , a substance class belonging to the most potent photoinitiators for radical polymerizations known to date. Thus, a simple and highly atom economic method has been found that allows the preparation of a broad range of photoinitiators adapted to their specific field of application even on a large scale.
Collapse
Affiliation(s)
- Riccardo Conti
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Anna Widera
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Georgina Müller
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Csilla Fekete
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and Economics1111BudapestMűegyetem rakpart 3.Hungary
| | - Debora Thöny
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Frederik Eiler
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Zoltán Benkő
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and Economics1111BudapestMűegyetem rakpart 3.Hungary
- ELKH-BME Computation Driven Chemistry Research Group1111BudapestMűegyetem rakpart 3.Hungary
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| |
Collapse
|
5
|
Xu Y, Li F, Ma J, Li J, Xie H, Wang C, Chen P, Wang L. Lipase-Catalyzed Phospha-Michael Addition Reactions under Mild Conditions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227798. [PMID: 36431898 PMCID: PMC9698776 DOI: 10.3390/molecules27227798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Organophosphorus compounds are the core structure of many active natural products. The synthesis of these compounds is generally achieved by metal catalysis requiring specifically functionalized substrates or harsh conditions. Herein, we disclose the phospha-Michael addition reaction of biphenyphosphine oxide with various substituted β-nitrostyrenes or benzylidene malononitriles. This biocatalytic strategy provides a direct route for the synthesis of C-P bonds with good functional group compatibility and simple and practical operation. Under the optimal conditions (styrene (0.5 mmol), biphenyphosphine oxide (0.5 mmol), Novozym 435 (300 U), and EtOH (1 mL)), lipase leads to the formation of organophosphorus compounds in yields up to 94% at room temperature. Furthermore, we confirm the role of the catalytic triad of lipase in this phospha-Michael addition reaction. This new biocatalytic system will have broad applications in organic synthesis.
Collapse
Affiliation(s)
- Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Jinglin Ma
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Jiapeng Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, China
| | - Peng Chen
- The Second Hospital of Jilin University Changchun, Jilin University, Changchun 130041, China
- Correspondence: (P.C.); (L.W.)
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
- Correspondence: (P.C.); (L.W.)
| |
Collapse
|
6
|
Huang W, Xue JY. Transition metal-free domino aryl-aryl coupling/phospha-Michael addition of diarylphosphinite to α,β-unsaturated ketones triggered by alkaline hydrolysis of (4-(2-alkenoyl)phenyl)triarylphosphonium salts. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1995385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wenhua Huang
- Department of Chemistry, Tianjin University, Tianjin, China
| | - Jing-Yu Xue
- Department of Chemistry, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Sun X, Yang J, Yan K, Zhuang X, Yu J, Song X, Zhang F, Li B, Wen J. Hydrophosphorylation of Electron-Deficient Alkenes and Alkynes Mediated by Convergent Paired Electrolysis. Chem Commun (Camb) 2022; 58:8238-8241. [DOI: 10.1039/d2cc02745c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward and practical strategy for hydrophosphorylation of electron-deficient alkenes and alkynes to access γ-ketophosphine oxides, enabled by a convergent paired electrolysis (CPE) in the absence of metal, base, and...
Collapse
|
8
|
Deng W, Hu Y, Hu J, Li X, Li Y, Huang Y. Electrochemically induced Markovnikov-type selective hydro/deuterophosphonylation of electron-rich alkenes. Chem Commun (Camb) 2022; 58:12094-12097. [DOI: 10.1039/d2cc04729b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemically induced Markovnikov-type selective hydro/deuterophosphonylation of electron-rich alkenes with P(O)H compounds to generate various organophosphorus compounds has been achieved.
Collapse
Affiliation(s)
- Weijie Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529090, P. R. China
| | - Xinling Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529090, P. R. China
| |
Collapse
|
9
|
Wani AA, Chourasiya SS, Kathuria D, Bharatam PV. 1,1-Diaminoazines as organocatalysts in phospha-Michael addition reactions. Chem Commun (Camb) 2021; 57:11717-11720. [PMID: 34697617 DOI: 10.1039/d1cc04657h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1,1-Diaminoazines can act as effective organocatalysts for the formation of phosphorus-carbon bonds between biphenylphosphine oxide and an activated alkene (Michael acceptor). These catalysts provide the P-C adducts at a faster rate and with relatively better yields in comparison to the organocatalysts employed earlier. The notable advantage is that 1,1-diaminoazines catalyse the reaction even in an aqueous medium with very good yields. Organocatalysis using 1,1-diaminoazines was also successfully carried out between dimethylphosphite and benzylidenemalononitrile under multicomponent conditions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| | - Deepika Kathuria
- University Center for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Punjab 140413, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
10
|
Beletskaya IP, Nájera C, Yus M. Catalysis and regioselectivity in hydrofunctionalization reactions of unsaturated carbon bonds. Part III. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4983] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review addresses the possibility of obtaining Markovnikov and anti-Markovnikov isomers in the reactions of unsaturated hydrocarbons with organophosphorus and organosulfur compounds having P–H and S–H bonds using metal salts or complexes as catalysts.
The bibliography includes 247 references.
Collapse
|
11
|
Zhao R, Huang X, Wang M, Hu S, Gao Y, Xu P, Zhao Y. TfOH-Catalyzed Phosphinylation of 2,3-Allenols into γ-Ketophosphine Oxides. J Org Chem 2020; 85:8185-8195. [PMID: 32452681 DOI: 10.1021/acs.joc.0c00328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The first facile and efficient acid-catalyzed direct coupling of a wide range of unprotected 2,3-allenols with arylphosphine oxides was developed, offering a general, one-step approach for the synthesis of structurally diverse γ-ketophosphine oxides accompanied by concurrent C-P/C═O bond formation with remarkable functional group tolerance and complete atom-economy under metal- and additive-free conditions. Mechanistic studies showed that this transformation involved a rearrangement and a phospha-Michael reaction.
Collapse
Affiliation(s)
- Runmin Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Xianhua Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Minning Wang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Shanshan Hu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Yuxing Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Pengxiang Xu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Yufen Zhao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| |
Collapse
|
12
|
Kozell V, Rahmani F, Piermatti O, Lanari D, Vaccaro L. A stereoselective organic base-catalyzed protocol for hydroamination of alkynes under solvent-free conditions. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Huang TZ, Chen T, Saga Y, Han LB. Me 3 P-catalyzed addition of hydrogen phosphoryl compounds P(O)H to electron-deficient alkenes: 1 to 1 vs 1 to 2 adducts. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Shan C, Chen F, Pan J, Gao Y, Xu P, Zhao Y. Zn(OTf)2-Catalyzed Phosphinylation of Propargylic Alcohols: Access to γ-Ketophosphine Oxides. J Org Chem 2017; 82:11659-11666. [DOI: 10.1021/acs.joc.7b02164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Changkai Shan
- Department of Chemistry and
Key Laboratory for Chemical Biology of Fujian Province, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Fushan Chen
- Department of Chemistry and
Key Laboratory for Chemical Biology of Fujian Province, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Jiaoting Pan
- Department of Chemistry and
Key Laboratory for Chemical Biology of Fujian Province, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Yuxing Gao
- Department of Chemistry and
Key Laboratory for Chemical Biology of Fujian Province, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Pengxiang Xu
- Department of Chemistry and
Key Laboratory for Chemical Biology of Fujian Province, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Yufen Zhao
- Department of Chemistry and
Key Laboratory for Chemical Biology of Fujian Province, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| |
Collapse
|
15
|
Salvo AMP, Giacalone F, Gruttadauria M. Advances in Organic and Organic-Inorganic Hybrid Polymeric Supports for Catalytic Applications. Molecules 2016; 21:E1288. [PMID: 27689980 PMCID: PMC6274031 DOI: 10.3390/molecules21101288] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022] Open
Abstract
In this review, the most recent advances (2014-2016) on the synthesis of new polymer-supported catalysts are reported, focusing the attention on the synthetic strategies developed for their preparation. The polymer-supported catalysts examined will be organic-based polymers and organic-inorganic hybrids and will include, among others, polystyrenes, poly-ionic liquids, chiral ionic polymers, dendrimers, carbon nanotubes, as well as silica and halloysite-based catalysts. Selected examples will show the synthesis and application in the field of organocatalysis and metal-based catalysis both for non-asymmetric and asymmetric transformations.
Collapse
Affiliation(s)
- Anna Maria Pia Salvo
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Francesco Giacalone
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Michelangelo Gruttadauria
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| |
Collapse
|
16
|
Huang H, Kang JY. Amine-Catalyzed Phospha-Michael Reaction of α,β-Unsaturated Aldehydes and Ketones with Multifunctional N-Heterocyclic Phosphine-Thioureas as Phosphonylation Reagent. Org Lett 2016; 18:4372-5. [DOI: 10.1021/acs.orglett.6b02121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hai Huang
- Department
of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
- Department
of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, People’s Republic of China
| | - Jun Yong Kang
- Department
of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| |
Collapse
|