1
|
Eleveld MJ, Wu J, Liu K, Ottelé J, Markovitch O, Kiani A, Herold LC, Lasorsa A, van der Wel PC, Otto S. Departure from randomness: Evolution of self-replicators that can self-sort through steric zipper formation. Chem 2025; 11:None. [PMID: 40352463 PMCID: PMC12062194 DOI: 10.1016/j.chempr.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 11/20/2024] [Indexed: 05/14/2025]
Abstract
Darwinian evolution of self-replicating entities most likely played a key role in the emergence of life from inanimate matter. For evolution to occur, self-replicators must (1) have structural space accessible to them, (2) occupy only part of it at any time, and (3) navigate it through mutation and selection. We describe a system of self-replicating hexameric macrocycles formed upon the mixing of two building blocks and occupying a subset of possible sequences. Specific interactions, most likely through steric zipper formation, favor a hexamer sequence where the two blocks alternate. Under different replication-destruction regimes, distinct replicator mutants are selected. With non-selective destruction (via outflow), the fastest replicators dominate. With chemically mediated, selective destruction, a mutant that balances replication speed and resistance to reduction by steric zipper formation becomes dominant. This system demonstrates a rudimentary form of Darwinian evolution, where replicators adapt to changing selection pressures through mutation and selection.
Collapse
Affiliation(s)
- Marcel J. Eleveld
- Center for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Juntian Wu
- Center for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Kai Liu
- Center for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Jim Ottelé
- Center for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Omer Markovitch
- Center for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Armin Kiani
- Center for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Lukas C. Herold
- Center for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | | | - Sijbren Otto
- Center for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Singh A, Parvin P, Saha B, Das D. Non-equilibrium self-assembly for living matter-like properties. Nat Rev Chem 2024; 8:723-740. [PMID: 39179623 DOI: 10.1038/s41570-024-00640-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
The soft and wet machines of life emerged as the spatially enclosed ensemble of biomolecules with replicating capabilities integrated with metabolic reaction cycles that operate at far-from-equilibrium. A thorough step-by-step synthetic integration of these elements, namely metabolic and replicative properties all confined and operating far-from-equilibrium, can set the stage from which we can ask questions related to the construction of chemical-based evolving systems with living matter-like properties - a monumental endeavour of systems chemistry. The overarching concept of this Review maps the discoveries on this possible integration of reaction networks, self-reproduction and compartmentalization under non-equilibrium conditions. We deconvolute the events of reaction networks and transient compartmentalization and extend the discussion towards self-reproducing systems that can be sustained under non-equilibrium conditions. Although enormous challenges lie ahead in terms of molecular diversity, information transfer, adaptation and selection that are required for open-ended evolution, emerging strategies to generate minimal metabolic cycles can extend our growing understanding of the chemical emergence of the biosphere of Earth.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Payel Parvin
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Bapan Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Dibyendu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India.
| |
Collapse
|
3
|
Komáromy D, Monzón DM, Marić I, Monreal Santiago G, Ottelé J, Altay M, Schaeffer G, Otto S. Generalist versus Specialist Self-Replicators. Chemistry 2024; 30:e202303837. [PMID: 38294075 DOI: 10.1002/chem.202303837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Darwinian evolution, including the selection of the fittest species under given environmental conditions, is a major milestone in the development of synthetic living systems. In this regard, generalist or specialist behavior (the ability to replicate in a broader or narrower, more specific food environment) are of importance. Here we demonstrate generalist and specialist behavior in dynamic combinatorial libraries composed of a peptide-based and an oligo(ethylene glycol) based building block. Three different sets of macrocyclic replicators could be distinguished based on their supramolecular organization: two prepared from a single building block as well as one prepared from an equimolar mixture of them. Peptide-containing hexamer replicators were found to be generalists, i. e. they could replicate in a broad range of food niches, whereas the octamer peptide-based replicator and hexameric ethyleneoxide-based replicator were proven to be specialists, i. e. they only replicate in very specific food niches that correspond to their composition. However, sequence specificity cannot be demonstrated for either of the generalist replicators. The generalist versus specialist nature of these replicators was linked to their supramolecular organization. Assembly modes that accommodate structurally different building blocks lead to generalist replicators, while assembly modes that are more restrictive yield specialist replicators.
Collapse
Affiliation(s)
- Dávid Komáromy
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Diego M Monzón
- Instituto de Bio-Orgánica "Antonio González" (IUBO-AG), Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ivana Marić
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jim Ottelé
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Meniz Altay
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gaël Schaeffer
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Sijbren Otto
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
4
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Liu K, Blokhuis A, van Ewijk C, Kiani A, Wu J, Roos WH, Otto S. Light-driven eco-evolutionary dynamics in a synthetic replicator system. Nat Chem 2024; 16:79-88. [PMID: 37653230 DOI: 10.1038/s41557-023-01301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Darwinian evolution involves the inheritance and selection of variations in reproducing entities. Selection can be based on, among others, interactions with the environment. Conversely, the replicating entities can also affect their environment generating a reciprocal feedback on evolutionary dynamics. The onset of such eco-evolutionary dynamics marks a stepping stone in the transition from chemistry to biology. Yet the bottom-up creation of a molecular system that exhibits eco-evolutionary dynamics has remained elusive. Here we describe the onset of such dynamics in a minimal system containing two synthetic self-replicators. The replicators are capable of binding and activating a co-factor, enabling them to change the oxidation state of their environment through photoredox catalysis. The replicator distribution adapts to this change and, depending on light intensity, one or the other replicator becomes dominant. This study shows how behaviour analogous to eco-evolutionary dynamics-which until now has been restricted to biology-can be created using an artificial minimal replicator system.
Collapse
Affiliation(s)
- Kai Liu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Alex Blokhuis
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Chris van Ewijk
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Armin Kiani
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Juntian Wu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Howlett MG, Fletcher SP. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nat Rev Chem 2023; 7:673-691. [PMID: 37612460 DOI: 10.1038/s41570-023-00524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Studying autocatalysis - in which molecules catalyse their own formation - might help to explain the emergence of chemical systems that exhibit traits normally associated with biology. When coupled to other processes, autocatalysis can lead to complex systems-level behaviour in apparently simple mixtures. Lipids are an important class of chemicals that appear simple in isolation, but collectively show complex supramolecular and mesoscale dynamics. Here we discuss autocatalytic lipids as a source of extraordinary behaviour such as primitive chemical evolution, chemotaxis, temporally controllable materials and even as supramolecular catalysts for continuous synthesis. We survey the literature since the first examples of lipid autocatalysis and highlight state-of-the-art synthetic systems that emulate life, displaying behaviour such as metabolism and homeostasis, with special consideration for generating structural complexity and out-of-equilibrium models of life. Autocatalytic lipid systems have enormous potential for building complexity from simple components, and connections between physical effects and molecular reactivity are only just beginning to be discovered.
Collapse
Affiliation(s)
- Michael G Howlett
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Stephen P Fletcher
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Morris DTJ, Clayden J. Screw sense and screw sensibility: communicating information by conformational switching in helical oligomers. Chem Soc Rev 2023; 52:2480-2496. [PMID: 36928473 PMCID: PMC10068589 DOI: 10.1039/d2cs00982j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Biological systems have evolved a number of different strategies to communicate information on the molecular scale. Among these, the propagation of conformational change is among the most important, being the means by which G-protein coupled receptors (GPCRs) use extracellular signals to modulate intracellular processes, and the way that opsin proteins translate light signals into nerve impulses. The developing field of foldamer chemistry has allowed chemists to employ conformationally well-defined synthetic structures likewise to mediate information transfer, making use of mechanisms that are not found in biological contexts. In this review, we discuss the use of switchable screw-sense preference as a communication mechanism. We discuss the requirements for functional communication devices, and show how dynamic helical foldamers derived from the achiral monomers such as α-aminoisobutyric acid (Aib) and meso-cyclohexane-1,2-diamine fulfil them by communicating information in the form of switchable screw-sense preference. We describe the various stimuli that can be used to switch screw sense, and explore the way that propagation of the resulting conformational preference in a well-defined helical molecule allows screw sense to control chemical events remote from a source of information. We describe the operation of these conformational switches in the membrane phase, and outline the progress that has been made towards using conformational switching to communicate between the exterior and interior of a phospholipid vesicle.
Collapse
Affiliation(s)
- David T J Morris
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
8
|
Samokhvalova S, Lutz JF. Macromolecular Information Transfer. Angew Chem Int Ed Engl 2023; 62:e202300014. [PMID: 36696359 DOI: 10.1002/anie.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
Macromolecular information transfer can be defined as the process by which a coded monomer sequence is communicated from one macromolecule to another. In such a transfer process, the information sequence can be kept identical, transformed into a complementary sequence or even translated into a different molecular language. Such mechanisms are crucial in biology and take place in DNA→DNA replication, DNA→RNA transcription and RNA→protein translation. In fact, there would be no life on Earth without macromolecular information transfer. Mimicking such processes with synthetic macromolecules would also be of major scientific relevance because it would open up new avenues for technological applications (e.g. data storage and processing) but also for the creation of artificial life. In this important context, this minireview summarizes recent research about information transfer in synthetic oligomers and polymers. Medium- and long-term perspectives are also discussed.
Collapse
Affiliation(s)
- Svetlana Samokhvalova
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
9
|
Slootbeek AD, van Haren MHI, Smokers IBA, Spruijt E. Growth, replication and division enable evolution of coacervate protocells. Chem Commun (Camb) 2022; 58:11183-11200. [PMID: 36128910 PMCID: PMC9536485 DOI: 10.1039/d2cc03541c] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Living and proliferating cells undergo repeated cycles of growth, replication and division, all orchestrated by complex molecular networks. How a minimal cell cycle emerged and helped primitive cells to evolve remains one of the biggest mysteries in modern science, and is an active area of research in chemistry. Protocells are cell-like compartments that recapitulate features of living cells and may be seen as the chemical ancestors of modern life. While compartmentalization is not strictly required for primitive, open-ended evolution of self-replicating systems, it gives such systems a clear identity by setting the boundaries and it can help them overcome three major obstacles of dilution, parasitism and compatibility. Compartmentalization is therefore widely considered to be a central hallmark of primitive life, and various types of protocells are actively investigated, with the ultimate goal of developing a protocell capable of autonomous proliferation by mimicking the well-known cell cycle of growth, replication and division. We and others have found that coacervates are promising protocell candidates in which chemical building blocks required for life are naturally concentrated, and chemical reactions can be selectively enhanced or suppressed. This feature article provides an overview of how growth, replication and division can be realized with coacervates as protocells and what the bottlenecks are. Considerations are given for designing chemical networks in coacervates that can lead to sustained growth, selective replication and controlled division, in a way that they are linked together like in the cell cycle. Ultimately, such a system may undergo evolution by natural selection of certain phenotypes, leading to adaptation and the gain of new functions, and we end with a brief discussion of the opportunities for coacervates to facilitate this.
Collapse
Affiliation(s)
- Annemiek D Slootbeek
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Iris B A Smokers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Sevim İ. Design of Subreplicating Systems from an Existing Self-Replicating Diels-Alder Reaction System by Isosteric Replacement. J Org Chem 2021; 86:14964-14973. [PMID: 34633828 DOI: 10.1021/acs.joc.1c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The key feature of non-enzymatic self-replicating systems is the formation of catalytically active ternary complexes in which product templates direct precursors into spatial proximity to allow the formation of new covalent bonds. It is possible to create new replicating species by simply evaluating the ternary active complex of an existing replicating system and applying proper isosteric replacements. In this study, we have evaluated the formerly reported self-replicating Diels-Alder reaction having 61 and 33% selectivity for two diastereomeric replicators. An isosteric replacement on the spacer part connecting recognition and reactive sites of the maleimide component was applied by considering the symmetry of catalytically active ternary complexes, and it was shown that self-replication was conserved. Analysis of the new system showed 77 and 21% diastereoselectivity for the two new replicating species. Seeding experiments indicated autocatalytic activity of both replicators. In other words, both replicators compete with each other by catalyzing their own formation from the same reagent source. Another modification was applied by aiming selective blocking of the autocatalytic cycle of the competing diastereomer. The new system showed a diastereoselectivity of about 94% for the favored replicator. The kinetic data of both systems were analyzed by modeling with SimFit simulations.
Collapse
Affiliation(s)
- İlhan Sevim
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| |
Collapse
|
11
|
Schaufelberger F, Ramström O. Activated Self-Resolution and Error-Correction in Catalytic Reaction Networks*. Chemistry 2021; 27:10335-10340. [PMID: 33780566 DOI: 10.1002/chem.202100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/02/2023]
Abstract
Understanding the emergence of function in complex reaction networks is a primary goal of systems chemistry and origin-of-life studies. Especially challenging is to create systems that simultaneously exhibit several emergent functions that can be independently tuned. In this work, a multifunctional complex reaction network of nucleophilic small molecule catalysts for the Morita-Baylis-Hillman (MBH) reaction is demonstrated. The dynamic system exhibited triggered self-resolution, preferentially amplifying a specific catalyst/product set out of a many potential alternatives. By utilizing selective reversibility of the products of the reaction set, systemic thermodynamically driven error-correction could also be introduced. To achieve this, a dynamic covalent MBH reaction based on adducts with internal H-transfer capabilities was developed. By careful tuning of the substituents, rate accelerations of retro-MBH reactions of up to four orders of magnitude could be obtained. This study thus demonstrates how efficient self-sorting of catalytic systems can be achieved through an interplay of several complex emergent functionalities.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH - Royal Institute of Technology Teknikringen 36, 10044 Stockholm (Sweden)
| | - Olof Ramström
- Department of Chemistry, KTH - Royal Institute of Technology Teknikringen 36, 10044 Stockholm (Sweden).,Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA.,Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
12
|
Acceleration of lipid reproduction by emergence of microscopic motion. Nat Commun 2021; 12:2959. [PMID: 34011926 PMCID: PMC8134444 DOI: 10.1038/s41467-021-23022-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/03/2021] [Indexed: 11/09/2022] Open
Abstract
Self-reproducing molecules abound in nature where they support growth and motion of living systems. In artificial settings, chemical reactions can also show complex kinetics of reproduction, however integrating self-reproducing molecules into larger chemical systems remains a challenge towards achieving higher order functionality. Here, we show that self-reproducing lipids can initiate, sustain and accelerate the movement of octanol droplets in water. Reciprocally, the chemotactic movement of the octanol droplets increases the rate of lipid reproduction substantially. Reciprocal coupling between bond-forming chemistry and droplet motility is thus established as an effect of the interplay between molecular-scale events (the self-reproduction of lipid molecules) and microscopic events (the chemotactic movement of the droplets). This coupling between molecular chemistry and microscopic motility offers alternative means of performing work and catalysis in micro-heterogeneous environments.
Collapse
|
13
|
Yang S, Schaeffer G, Mattia E, Markovitch O, Liu K, Hussain AS, Ottelé J, Sood A, Otto S. Chemical Fueling Enables Molecular Complexification of Self-Replicators*. Angew Chem Int Ed Engl 2021; 60:11344-11349. [PMID: 33689197 PMCID: PMC8251556 DOI: 10.1002/anie.202016196] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Unravelling how the complexity of living systems can (have) emerge(d) from simple chemical reactions is one of the grand challenges in contemporary science. Evolving systems of self-replicating molecules may hold the key to this question. Here we show that, when a system of replicators is subjected to a regime where replication competes with replicator destruction, simple and fast replicators can give way to more complex and slower ones. The structurally more complex replicator was found to be functionally more proficient in the catalysis of a model reaction. These results show that chemical fueling can maintain systems of replicators out of equilibrium, populating more complex replicators that are otherwise not readily accessible. Such complexification represents an important requirement for achieving open-ended evolution as it should allow improved and ultimately also new functions to emerge.
Collapse
Affiliation(s)
- Shuo Yang
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Gael Schaeffer
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Elio Mattia
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Omer Markovitch
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Origins CenterUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Kai Liu
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Andreas S. Hussain
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Jim Ottelé
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ankush Sood
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Sijbren Otto
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
14
|
Yang S, Schaeffer G, Mattia E, Markovitch O, Liu K, Hussain AS, Ottelé J, Sood A, Otto S. Chemical Fueling Enables Molecular Complexification of Self‐Replicators**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuo Yang
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gael Schaeffer
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Elio Mattia
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Omer Markovitch
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Origins Center University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Kai Liu
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Andreas S. Hussain
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jim Ottelé
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ankush Sood
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
15
|
Hanopolskyi AI, Smaliak VA, Novichkov AI, Semenov SN. Autocatalysis: Kinetics, Mechanisms and Design. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000026] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anton I. Hanopolskyi
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Viktoryia A. Smaliak
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Alexander I. Novichkov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Sergey N. Semenov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| |
Collapse
|
16
|
From self-replication to replicator systems en route to de novo life. Nat Rev Chem 2020; 4:386-403. [PMID: 37127968 DOI: 10.1038/s41570-020-0196-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
The process by which chemistry can give rise to biology remains one of the biggest mysteries in contemporary science. The de novo synthesis and origin of life both require the functional integration of three key characteristics - replication, metabolism and compartmentalization - into a system that is maintained out of equilibrium and is capable of open-ended Darwinian evolution. This Review takes systems of self-replicating molecules as starting points and describes the steps necessary to integrate additional characteristics of life. We analyse how far experimental self-replicators have come in terms of Darwinian evolution. We also cover models of replicator communities that attempt to solve Eigen's paradox, whereby accurate replication needs complex machinery yet obtaining such complex self-replicators through evolution requires accurate replication. Successful models rely on a collective metabolism and a way of (transient) compartmentalization, suggesting that the invention and integration of these two characteristics is driven by evolution. Despite our growing knowledge, there remain numerous key challenges that may be addressed by a combined theoretical and experimental approach.
Collapse
|
17
|
Chadwick AC, Heckenast MA, Race JJ, Pringle PG, Sparkes HA. Self-Replication of Chelating Diphosphines via Pt(0)-Catalyzed Hydrophosphination. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ailis C. Chadwick
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Martin A. Heckenast
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - James J. Race
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Paul G. Pringle
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Hazel A. Sparkes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
18
|
Zhang X, Chen L, Lim KH, Gonuguntla S, Lim KW, Pranantyo D, Yong WP, Yam WJT, Low Z, Teo WJ, Nien HP, Loh QW, Soh S. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804540. [PMID: 30624820 DOI: 10.1002/adma.201804540] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/09/2018] [Indexed: 05/22/2023]
Abstract
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man-made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli-responsive materials; these "smart" materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli-responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self-regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli-responsive materials as the basic building blocks.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Spandhana Gonuguntla
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Wen Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wai Pong Yong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wei Jian Tyler Yam
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhida Low
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wee Joon Teo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Ping Nien
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiao Wen Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
19
|
Valls A, Altava B, Burguete MI, Escorihuela J, Martí-Centelles V, Luis SV. Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo00163h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supramolecular interactions based on amide groups direct the preferential formation of tritopic instead of monotopic or ditopic imidazolium compounds.
Collapse
Affiliation(s)
- Adriana Valls
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - M. Isabel Burguete
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Jorge Escorihuela
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | | | - Santiago V. Luis
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| |
Collapse
|
20
|
Bartolec B, Altay M, Otto S. Template-promoted self-replication in dynamic combinatorial libraries made from a simple building block. Chem Commun (Camb) 2018; 54:13096-13098. [PMID: 30395138 DOI: 10.1039/c8cc06253f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report dynamic combinatorial libraries made from a simple building block that is on the verge of enabling self-assembly driven self-replication. Adding a template provides a sufficient additional push yielding self-replication. Self-assembly and self-replication can emerge with building blocks that are considerably smaller than those reported thus far.
Collapse
Affiliation(s)
- B Bartolec
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Meniz Altay
- Centre for Systems ChemistryStratingh InstituteUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Yigit Altay
- Centre for Systems ChemistryStratingh InstituteUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sijbren Otto
- Centre for Systems ChemistryStratingh InstituteUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
22
|
Altay Y, Altay M, Otto S. Existing Self-Replicators Can Direct the Emergence of New Ones. Chemistry 2018; 24:11911-11915. [PMID: 29901838 DOI: 10.1002/chem.201803027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/24/2022]
Abstract
The study of the interplay between different self-replicating molecules constitutes an important new phase in the synthesis of life and in unravelling the origin of life. Here we show how existing replicators can direct the nature of a newly formed replicator. Starting from the same building block, 6-ring replicators formed when the mixture was exposed to pre-existing 6-membered replicators, while pre-formed 8-membered replicators funneled the building block into 8-ring replicators. Not only ring size, but also the mode of assembly of the rings into stacks was inherited from the pre-existing replicators. These results show that the nature of self-replicating molecules can be strongly influenced by the interplay between different self-replicators, overriding preferences innate to the structure of the building block.
Collapse
Affiliation(s)
- Yigit Altay
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Meniz Altay
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
23
|
Altay M, Altay Y, Otto S. Parasitic Behavior of Self-Replicating Molecules. Angew Chem Int Ed Engl 2018; 57:10564-10568. [PMID: 29856109 DOI: 10.1002/anie.201804706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/16/2022]
Abstract
Self-replication plays a central role in the origin of life and in strategies to synthesize life de novo. Studies on self-replication have focused mostly on isolated systems, while the dynamics of systems containing multiple replicators have received comparatively little attention. Yet most evolutionary scenarios involve the interplay between different replicators. Here we report the emergence of parasitic behavior in a system containing self-replicators derived from two subtly different building blocks 1 and 2. Replicators from 2 form readily through cross-catalysis by pre-existing replicators made from 1. Once formed, the new replicators consume the original replicators to which they owe their existence. These results resemble parasitic and predatory behavior that is normally associated with living systems and show how such lifelike behavior has its roots in relatively simple systems of self-replicating molecules.
Collapse
Affiliation(s)
- Meniz Altay
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Yigit Altay
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
24
|
Kosikova T, Philp D. Exploring the emergence of complexity using synthetic replicators. Chem Soc Rev 2018; 46:7274-7305. [PMID: 29099123 DOI: 10.1039/c7cs00123a] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant number of synthetic systems capable of replicating themselves or entities that are complementary to themselves have appeared in the last 30 years. Building on an understanding of the operation of synthetic replicators in isolation, this field has progressed to examples where catalytic relationships between replicators within the same network and the extant reaction conditions play a role in driving phenomena at the level of the whole system. Systems chemistry has played a pivotal role in the attempts to understand the origin of biological complexity by exploiting the power of synthetic chemistry, in conjunction with the molecular recognition toolkit pioneered by the field of supramolecular chemistry, thereby permitting the bottom-up engineering of increasingly complex reaction networks from simple building blocks. This review describes the advances facilitated by the systems chemistry approach in relating the expression of complex and emergent behaviour in networks of replicators with the connectivity and catalytic relationships inherent within them. These systems, examined within well-stirred batch reactors, represent conceptual and practical frameworks that can then be translated to conditions that permit replicating systems to overcome the fundamental limits imposed on selection processes in networks operating under closed conditions. This shift away from traditional spatially homogeneous reactors towards dynamic and non-equilibrium conditions, such as those provided by reaction-diffusion reaction formats, constitutes a key change that mimics environments within cellular systems, which possess obvious compartmentalisation and inhomogeneity.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
25
|
Altay Y, Tezcan M, Otto S. Emergence of a New Self-Replicator from a Dynamic Combinatorial Library Requires a Specific Pre-Existing Replicator. J Am Chem Soc 2017; 139:13612-13615. [PMID: 28910535 PMCID: PMC5632813 DOI: 10.1021/jacs.7b07346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Our
knowledge regarding the early steps in the formation of evolvable
life and what constitutes the minimal molecular basis of life remains
far from complete. The recent emergence of systems chemistry reinvigorated
the investigation of systems of self-replicating molecules to address
these questions. Most of these studies focus on single replicators
and the effects of replicators on the emergence of other replicators
remains under-investigated. Here we show the cross-catalyzed emergence
of a novel self-replicator from a dynamic combinatorial library made
from a threonine containing peptide building block, which, by itself,
only forms trimers and tetramers that do not replicate. Upon seeding
of this library with different replicators of different macrocycle
size (hexamers and octamers), we observed the emergence of hexamer
replicator consisting of six units of the threonine peptide only when
it is seeded with an octamer replicator containing eight units of
a serine building block. These results reveal for the first time how
a new replicator can emerge in a process that relies critically on
the assistance by another replicator through cross-catalysis and that
replicator composition is history dependent.
Collapse
Affiliation(s)
- Yigit Altay
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Meniz Tezcan
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
26
|
Komáromy D, Stuart MCA, Monreal Santiago G, Tezcan M, Krasnikov VV, Otto S. Self-Assembly Can Direct Dynamic Covalent Bond Formation toward Diversity or Specificity. J Am Chem Soc 2017; 139:6234-6241. [PMID: 28398730 PMCID: PMC5423079 DOI: 10.1021/jacs.7b01814] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
With
the advent of reversible covalent chemistry the study of the
interplay between covalent bond formation and noncovalent interactions
has become increasingly relevant. Here we report that the interplay
between reversible disulfide chemistry and self-assembly can give
rise either to molecular diversity, i.e., the emergence of a unprecedentedly
large range of macrocycles or to molecular specificity, i.e., the
autocatalytic emergence of a single species. The two phenomena are
the result of two different modes of self-assembly, demonstrating
that control over self-assembly pathways can enable control over covalent
bond formation.
Collapse
Affiliation(s)
- Dávid Komáromy
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marc C A Stuart
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Meniz Tezcan
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Victor V Krasnikov
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
27
|
Kamonsutthipaijit N, Anderson HL. Template-directed synthesis of linear porphyrin oligomers: classical, Vernier and mutual Vernier. Chem Sci 2017; 8:2729-2740. [PMID: 28553508 PMCID: PMC5426366 DOI: 10.1039/c6sc05355f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
We demonstrate a variety of template-directed strategies for preparing linear monodisperse butadiyne-linked porphyrin oligomers by Glaser–Hay coupling, based on the coordination of pyridine-substituted nickel(ii) porphyrins to zinc(ii) porphyrins.
Three different types of template-directed syntheses of linear porphyrin oligomers are presented. In the classical approach the product has the same number of binding sites as the template, whereas in Vernier reactions the product has the lowest common multiple of the numbers of binding sites in the template and the building block. Mutual Vernier templating is like Vernier templating except that both strands of the Vernier complex undergo coupling simultaneously, so that it becomes impossible to say which is the ‘template’ and which is the ‘building block’. The template-directed synthesis of monodisperse linear oligomers is more difficult than that of cyclic oligomers, because the products of linear templating have reactive ends. All three types of templating are demonstrated here, and used to prepare a nickel(ii) porphyrin dodecamer with 4-pyridyl substituents on all twelve porphyrin units. The stabilities and cooperativities of the double-strand complexes involved in these reactions were investigated by UV-vis-NIR titration. The four-rung ladder duplex has a stability constant of about 2 × 1018 M–1 in dichloromethane at 298 K.
Collapse
Affiliation(s)
| | - Harry L Anderson
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Oxford OX1 3TA , UK .
| |
Collapse
|