1
|
Milcendeau P, Colonna P, Ramdani M, Garcia-Argote S, Glinsky-Olivier N, Pieters G, Guinchard X. Au(I)-Catalyzed Regioselective Hydrogen Isotope Labeling of Indoles. Org Lett 2024; 26:9735-9740. [PMID: 39499808 DOI: 10.1021/acs.orglett.4c03597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The gold(I)-catalyzed hydrogen isotope exchange reaction on indoles and related heterocycles is described under mild conditions and low catalyst loadings, using CD3OD and D2O as readily available deuterium sources. C3-unsubstituted indoles are labeled at the C3 position with exquisite regioselectivity, while C3-substituted indoles are labeled at the C2 position. The method is also applicable to the regioselective tritiation of indoles. Mechanistic studies revealed the involvement of aurated indoles as key intermediates.
Collapse
Affiliation(s)
- Pierre Milcendeau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Pierre Colonna
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé, SCBM, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Mohammed Ramdani
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Sébastien Garcia-Argote
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé, SCBM, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Nicolas Glinsky-Olivier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Grégory Pieters
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé, SCBM, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Xavier Guinchard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Fitzgerald LS, McNulty RL, Greener A, O’Duill ML. Programmable Deuteration of Indoles via Reverse Deuterium Exchange. J Org Chem 2023; 88:10772-10776. [PMID: 37477980 PMCID: PMC10407927 DOI: 10.1021/acs.joc.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 07/23/2023]
Abstract
Methods for selective deuterium incorporation into drug-like molecules have become extremely valuable due to the commercial, mechanistic, and biological importance of deuterated compounds. Herein, we report a programmable labeling platform that allows access to C2, C3, or C2- and C3-deuterated indoles under mild, user-friendly conditions. The C2-deuterated indoles are accessed using a reverse hydrogen isotope exchange strategy which represents the first non-directed C2-deuteration of indoles.
Collapse
Affiliation(s)
- Liam S. Fitzgerald
- School
of Chemistry, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Rachael L. McNulty
- School
of Chemistry, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Andrew Greener
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Miriam L. O’Duill
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
3
|
Yamada T, Arai K, Kikuchi R, Okamoto S. Deuteration of Indole Compounds: Synthesis of Deuterated Auxins, Indole-3-acetic Acid-d5 and Indole-3-butyric Acid-d5. ACS OMEGA 2021; 6:19956-19963. [PMID: 34368582 PMCID: PMC8340417 DOI: 10.1021/acsomega.1c02940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/08/2021] [Indexed: 05/15/2023]
Abstract
In this study, we describe a practical and facile synthesis of deuterium-labeled indoles via acid-catalyzed hydrogen-deuterium exchange. 3-Substituted indoles were efficiently deuterated through treatment with 20 wt % D2SO4 in CD3OD at 60-90 °C. A deuterium incorporation reaction of 3-unsubstituted indoles was accomplished through treatment with CD3CO2D at 150 °C. The in situ preparation of a 20 wt % D2SO4/CH3OD/D2O solution enabled a large-scale and low-cost synthesis of auxins, indole-3-acetic acid-d5 and indole-3-butyric acid-d5.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department
of Materials and Life Chemistry, Kanagawa
University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kazuki Arai
- Department
of Materials and Life Chemistry, Kanagawa
University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Rie Kikuchi
- Faculty
of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Sentaro Okamoto
- Department
of Materials and Life Chemistry, Kanagawa
University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
4
|
Darshana D, Sureram S, Mahidol C, Ruchirawat S, Kittakoop P. Spontaneous conversion of prenyl halides to acids: application in metal-free preparation of deuterated compounds under mild conditions. Org Biomol Chem 2021; 19:7390-7402. [PMID: 34296730 DOI: 10.1039/d1ob01275d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we reveal a simple generation of deuterium halide (DX) from common and inexpensive reagents readily available in a synthetic chemistry laboratory, i.e. prenyl-, allyl-, and propargyl halides, under mild conditions. We envisaged that in situ generation of an acid, deuterium halide, would be useful for acid-catalyzed reactions and could be employed for organocatalytic deuteration. The present work reports a metal-free method for deuterium labeling covering a broad range of substrate including phenolic compounds (i.e. flavonoids and stilbenes), indoles, pyrroles, carbonyl compounds, and steroids. This method was also applied for commonly used drugs such as loxoprofen, haloperidol, stanolone, progesterone, androstenedione, donepezil, ketorolac, adrenosterone, cortisone, pregnenolone, and dexamethasone. A gram-scale chromatography-free synthesis of some deuterated compounds is demonstrated in this work. This work provides a simple, clean and by-product-free, site-selective deuteration, and the deuterated products are obtained without chromatographic separation. When applying these initiators for other acid-catalyzed reactions, the deuterium isotope effects of DX may provide products which are different from those obtained from reactions using common acids. Although the mechanism of the spontaneous transformation of prenyl halides to acid is unclear, this overlooked chemistry may be useful for many reactions.
Collapse
Affiliation(s)
- Dhanushka Darshana
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.
| | | | | | | | | |
Collapse
|
5
|
Răsădean DM, Machida T, Sada K, Pudney CR, Pantoș GD. Flavin mimetics: Synthesis and photophysical properties. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Zhang J, Zhang S, Gogula T, Zou H. Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinquan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuaizhong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Thirupathi Gogula
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
7
|
Sakai T, Kumoi T, Ishikawa T, Nitta T, Iida H. Comparison of riboflavin-derived flavinium salts applied to catalytic H 2O 2 oxidations. Org Biomol Chem 2018; 16:3999-4007. [PMID: 29766194 DOI: 10.1039/c8ob00856f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of flavinium salts, 5-ethylisoalloxazinium, 5-ethylalloxazinium, and 1,10-ethylene-bridged alloxazinium triflates, were prepared from commercially available riboflavin. This study presents a comparison between their optical and redox properties, and their catalytic activity in H2O2 oxidations of sulfide, tertiary amine, and cyclobutanone. Reflecting the difference between the π-conjugated ring structures, the flavinium salts displayed very different redox properties, with reduction potentials in the order of: 5-ethylisoalloxazinium > 5-ethylalloxazinium > 1,10-ethylene-bridged alloxazinium. A comparison of their catalytic activity revealed that 5-ethylisoalloxazinium triflate specifically oxidises sulfide and cyclobutanone, and 5-ethylalloxazinium triflate smoothly oxidises tertiary amine. 1,10-Bridged alloxazinium triflate, which can be readily obtained from riboflavin in large quantities, showed moderate catalytic activity for the H2O2 oxidation of sulfide and cyclobutanone.
Collapse
Affiliation(s)
- Takuya Sakai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.
| | | | | | | | | |
Collapse
|