1
|
Hadianamrei R, Tomeh MA, Wang J, Brown S, Zhao X. Surfactant like peptides for targeted gene delivery to cancer cells. Biochem Biophys Res Commun 2023; 652:35-45. [PMID: 36809703 DOI: 10.1016/j.bbrc.2023.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 02/12/2023] [Indexed: 02/15/2023]
Abstract
Surfactant like peptides (SLPs) are a class of amphiphilic peptides widely used for drug delivery and tissue engineering. However, there are very few reports on their application for gene delivery. The current study was aimed at development of two new SLPs, named (IA)4K and (IG)4K, for selective delivery of antisense oligodeoxynucleotides (ODNs) and small interfering RNA (siRNA) to cancer cells. The peptides were synthesized by Fmoc solid phase synthesis. Their complexation with nucleic acids was studied by gel electrophoresis and DLS. The transfection efficiency of the peptides was assessed in HCT 116 colorectal cancer cells and human dermal fibroblasts (HDFs) using high content microscopy. The cytotoxicity of the peptides was assessed by standard MTT test. The interaction of the peptides with model membranes was studied using CD spectroscopy. Both SLPs delivered siRNA and ODNs to HCT 116 colorectal cancer cells with high transfection efficiency which was comparable to the commercial lipid-based transfection reagents, but with higher selectivity for HCT 116 compared to HDFs. Moreover, both peptides exhibited very low cytotoxicity even at high concentrations and long exposure time. The current study provides more insights into the structural features of SLPs required for nucleic acid complexation and delivery and can therefore serve as a guide for the rational design of new SLPs for selective gene delivery to cancer cells to minimize the adverse effects in healthy tissues.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy and Biomedical Science, University of Portsmouth, PO1 2UP, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Hadianamrei R, Wang J, Brown S, Zhao X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int J Pharm 2022; 617:121619. [PMID: 35218898 DOI: 10.1016/j.ijpharm.2022.121619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Gene therapy has gained increasing attention as an alternative to pharmacotherapy for treatment of various diseases. The extracellular and intracellular barriers to gene delivery necessitate the use of gene vectors which has led to the development of myriads of gene delivery systems. However, many of these gene delivery systems have pitfalls such as low biocompatibility, low loading efficiency, low transfection efficiency, lack of tissue selectivity and high production costs. Herein, we report the development of a new series of short cationic amphiphilic peptides with anticancer activity for selective delivery of small interfering RNA (siRNA) and antisense oligodeoxynucleotides (ODNs) to cancer cells. The peptides consist of alternating dyads of hydrophobic (isoleucine (I) or leucine (L)) and hydrophilic (arginine (R) or lysine (L)) amino acids. The peptides exhibited higher preference for transfection of HCT 116 colorectal cancer cells compared to human dermal fibroblasts (HDFs) and induced higher level of gene silencing in the cancer cells. The nucleic acid complexation and transfection efficiency of the peptides was a function of their secondary structure, their hydrophobicity and their C-terminal amino acid. The peptides containing L in their hydrophobic domain formed stronger complexes with siRNA and successfully delivered it to the cancer cells but were unable to release their cargo inside the cells and therefore could not induce any gene silencing. On the contrary, the peptides containing I in their hydrophobic domain were able to release their associated siRNA and induce considerable gene silencing in cancer cells. The peptides exhibited higher selectivity for colorectal cancer cells and induced less gene silencing in fibroblasts compared to the lipid-based commercial transfection reagent DharmaFECT™ 1. The results from this study can serve as a tool for rational design of new peptide-based gene vectors for high selective gene delivery to cancer cells.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Aschmann D, Riebe S, Neumann T, Killa D, Ostwaldt JE, Wölper C, Schmuck C, Voskuhl J. A stimuli responsive two component supramolecular hydrogelator with aggregation-induced emission properties. SOFT MATTER 2019; 15:7117-7121. [PMID: 31503269 DOI: 10.1039/c9sm01513b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this contribution we describe a novel hydrogelator based on four guadiniumcarbonylpyrrole units in combination with aggregation-induced emission active aromatic thioethers which undergo self-assembly into fibrills in aqueous media as visible in AFM and TEM measurements. These fibrills are weakly luminescent and unable to induce gelation. Upon addition of malonic acid a cross-linking of the single fibres was detected leading to the formation of a highly emissive stable hydrogel. This gel responds to several external stimuli such as heat, shaking as well as pH changes.
Collapse
Affiliation(s)
- Dennis Aschmann
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Hatai J, Schmuck C. Diverse Properties of Guanidiniocarbonyl Pyrrole-Based Molecules: Artificial Analogues of Arginine. Acc Chem Res 2019; 52:1709-1720. [PMID: 31150198 DOI: 10.1021/acs.accounts.9b00142] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The guanidinium moiety, which is present in active sites of many enzymes, plays an important role in the binding of anionic substrates. In addition, it was also found to be an excellent binding motif for supramolecular chemistry. Inspired by Nature, scientists have developed artificial receptors containing guanidinium scaffolds that bind to a variety of oxoanions through hydrogen bonding and charge pairing interactions. However, the majority of binding studies is restricted to organic solvents. Polyguanidinium based molecules can form efficient complexes in aqueous solvents due to strong electrostatic interactions. However, they only have moderate association constants, which are significantly decreased in the presence of competing anions and salts. Hence, to improve the binding affinity of the guanidinium moiety, our group developed the cationic guanidiniocarbonyl pyrrole (GCP) moiety. This rigid planar analogue binds efficiently to oxoanions, like carboxylates even in aqueous solvents. The lower p Ka value (7-8) of GCP compared to guanidinium derivatives (p Ka 13) favors the formation of strong, hydrogen bonded ion pairs. In addition, carboxylate binding is further enhanced by additional amide hydrogen bond donors located at the five position of the pyrrole core. Moreover, the design has allowed for introducing secondary interactions between receptor side chains and guest molecules, which allows for optimizing binding specificity and selectivity. The spectroscopic data confirmed stabilization of guanidiniocarbonyl pyrrole/oxoanion complexes through a combination of ion pairing and multiple hydrogen bonding interactions. The key role of the ionic interaction in a polar solvent, is demonstrated by a zwitterion derivative of the guanidiniocarbonyl pyrrole, which self-assembles in both dimethyl sulfoxide and pure water with association constants of K > 1010 M-1 and K = 170 M-1, respectively. In this Account, we discuss strategies for making GCP functionalized compounds, in order to boost their ability to bind oxoanions. Then we explore how these building blocks have been incorporated into different synthetic molecules and peptide sequences, highlighting examples that demonstrated the versatility of this binding scaffold. For instance, the high oxoanion binding property of GCP-based compounds was exploited to generate a detectable signal for sensing applications, thus improving selectivity and sensitivity in aqueous solution. Moreover, peptides and molecules containing GCP have shown excellent gene transfections properties. Furthermore, the self-assembly and zwitterionic behavior of zwitterionic GCP analogues was used to develop variety of supramolecular architectures such as stable supramolecular β-helix structure, linear supramolecular oligomers, one-dimensional rods or two-dimension sheets, fibers, vesicles, soft nanospheres, as well as stimuli responsive supramolecular gels.
Collapse
Affiliation(s)
- Joydev Hatai
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Carsten Schmuck
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| |
Collapse
|
5
|
Shi X, Hou M, Ma X, Bai S, Zhang T, Xue P, Zhang X, Liu G, Kang Y, Xu Z. Starburst Diblock Polyprodrugs: Reduction-Responsive Unimolecular Micelles with High Drug Loading and Robust Micellar Stability for Programmed Delivery of Anticancer Drugs. Biomacromolecules 2019; 20:1190-1202. [PMID: 30658038 DOI: 10.1021/acs.biomac.8b01566] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polymeric prodrug based on therapeutic nanomedicine has demonstrated great promise for effective tumor growth inhibition, however, the drawbacks of low drug-loading and weak micellar stability limit its application for clinical cancer therapy. Herein, a reduction-responsive starburst block copolymer prodrug CCP [β-cyclodextrin (β-CD)-PCPTXX-POEGMA, XX: SS or CC] has been developed for cancer therapy. And CCP is composed of β-CD-Br core with multiple reactive sites, as well as a diblock copolymer containing hydrophobic polymerized camptothecin (PCPT) prodrug chain and hydrophilic poly[(ethylene glycol) methyl ether methacrylate] (OEGMA) chain. A family of CCP polymeric prodrugs with different drug loading contents (up to 25%) and various sizes of unimolecular micelles (UMs) (around 30 nm) were obtained by adjusting the block ratio of PCPTXX and POEGMA. On account of the amphiphilic structure feature, CPP could take shape water-soluble UMs in aqueous medium with excellent micellar stability. Under imitatively reductive tumor microenvironment, anticancer drug CPT could rapidly escape from CCP UMs in terms of disulfide bond breakage. However, this behavior is strongly refrained in the physiological environment. In vitro and in vivo outcome confirmed that CCP UMs showed excellent performance of sufficient tumor accumulation, high-efficiency tumor growth inhibition and low-toxicity for healthy tissues. Based on these gratifying therapeutic efficacy, it is believed that as-present starburst prodrug strategy can offer a brand-new insight for high-efficiency therapeutic nanoplatforms for chemotherapy application.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy , Southwest University , Chongqing , 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Meili Hou
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy , Southwest University , Chongqing , 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Xiaoqian Ma
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy , Southwest University , Chongqing , 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Shuang Bai
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy , Southwest University , Chongqing , 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Tian Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy , Southwest University , Chongqing , 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy , Southwest University , Chongqing , 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Xiaoli Zhang
- Department of Hematology and Oncology , Shenzhen Children's Hospital , Shenzhen , Guangdong 518038 , People's Republic of China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , 361102 , People's Republic of China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy , Southwest University , Chongqing , 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy , Southwest University , Chongqing , 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| |
Collapse
|
6
|
|
7
|
Li M, Zellermann E, Schmuck C. Formation of Polymeric Particles by Direct Polymerization on the Surface of a Supramolecular Template. Chemistry 2018; 24:9061-9065. [PMID: 29626355 DOI: 10.1002/chem.201705209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/05/2023]
Abstract
Formation of polymeric materials on the surface of supramolecular assemblies is rather challenging because of the often weak noncovalent interactions between the self-assembled template and the monomers before polymerization. We herein show that the introduction of a supramolecular anion recognition motif, the guanidiniocarbonyl pyrrole cation (GCP), into a short Fmoc-dipeptide 1 leads to self-assembled spherical nanoparticles in aqueous solution. Negatively charged diacetylene monomers can be attached onto the surface of these nanoparticles, which, after UV polymerization, leads to the formation of a polymer shell around the self-assembled template. The hybrid supramolecular and polymeric nanoparticles demonstrate intriguing thermal hysteresis phenomena. The template nanoparticles could be disassembled upon treatment with organic base, which cleaved the Fmoc moiety on 1. This strategy thus showed that a supramolecular anion recognition motif allows the post-assembly formation of polymeric nanomaterials from anionic monomers around a cationic self-assembled template.
Collapse
Affiliation(s)
- Mao Li
- Institute for Organic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Elio Zellermann
- Institute for Organic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
8
|
Hu XY, Ehlers M, Wang T, Zellermann E, Mosel S, Jiang H, Ostwaldt JE, Knauer SK, Wang L, Schmuck C. Formation of Twisted β-Sheet Tapes from a Self-Complementary Peptide Based on Novel Pillararene-GCP Host-Guest Interaction with Gene Transfection Properties. Chemistry 2018; 24:9754-9759. [PMID: 29770977 DOI: 10.1002/chem.201801315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Indexed: 11/12/2022]
Abstract
Small peptides capable of assembling into well-defined nanostructures have attracted extensive attention due to their interesting applications as biomaterials. This work reports the first example of a pillararene functionalized with a guanidiniocarbonyl pyrrole (GCP)-conjugated short peptide segment. The obtained amphiphilic peptide 1 spontaneously self-assembles into a supramolecular β-sheet in aqueous solution based on host-guest interaction between pillararene and GCP unit as well as hydrogen-bonding between the peptide strands. Interestingly, peptide 1 at low concentration shows transitions from small particles to "pearl necklace" assemblies, and finally to branched fibers in a time-dependent process. At higher concentration, it directly assembles into twisted β-sheet tapes. Notably, without pillararene moiety, the control peptide A forms α-helix structure with morphology changing from particles to bamboo-like assemblies depending on concentration, indicating a significant role of the pillararene-GCP host-guest interaction for the secondary structure formation. Moreover, peptide 1 can serve as an efficient gene transfection vector.
Collapse
Affiliation(s)
- Xiao-Yu Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Applied Chemistry Department, School of Material Science & Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China.,Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Martin Ehlers
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Tingting Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Elio Zellermann
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Stefanie Mosel
- Institute for Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Hao Jiang
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Jan-Erik Ostwaldt
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Shirley K Knauer
- Institute for Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
9
|
Fox JM, Zhao M, Fink MJ, Kang K, Whitesides GM. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annu Rev Biophys 2018; 47:223-250. [DOI: 10.1146/annurev-biophys-070816-033743] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon—termed enthalpy/entropy (H/S) compensation—hinders efforts in biomolecular design, and its incidence—often a surprise to experimentalists—makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/ S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting—and, perhaps, avoiding or exploiting—this phenomenon in biophysical systems.
Collapse
Affiliation(s)
- Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Mengxia Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Michael J. Fink
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
- The Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|