1
|
Maity P, Bisht AS, Deepak, Roy RK. Kinetically Controlled Approach for One-Pot Synthesis of Poly(peptide- b-peptoid) Exhibiting Well-Defined Secondary Structure and Thermal Stability. ACS Macro Lett 2025; 14:188-194. [PMID: 39889215 DOI: 10.1021/acsmacrolett.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Sequence-controlled polymerization aims to bridge the gap between biopolymers and synthetic macromolecules. In a kinetically controlled approach, the inherent reactivity differences among monomers determine the primary structure or sequence of the monomers linked within the resulting copolymer chains. This report outlines a one-pot synthesis of polypeptide-b-polypeptoid by choosing a suitable pair of N-carboxy anhydride (NCA) monomers with significant reactivity differences. We have demonstrated the preparation of well-defined block copolymers, including polyproline-b-polysarcosine (PLP-b-PSar) and poly(propargyl proline)-b-polysarcosine (PLPP-b-PSar) in a single step. 1H NMR kinetic studies confirmed the sequence-controlled primary structures of these block copolymers. The NMR analysis indicated a striking reactivity ratio difference (rPLP = 925 and rPSar = 0.0014; rPLPP = 860 and rPSar = 0.0015) between the selected monomer pairs, which was crucial for a one-pot block copolymer synthesis. Notably, these sequence-controlled copolymers' secondary structures and stability were remarkably similar to those of block copolymers synthesized through conventional sequential addition methods. This further underscores the practicality of this kinetically controlled approach.
Collapse
Affiliation(s)
- Prabir Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli (PO) 140306, Punjab, India
| | - Arjun Singh Bisht
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli (PO) 140306, Punjab, India
| | - Deepak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli (PO) 140306, Punjab, India
| | - Raj Kumar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli (PO) 140306, Punjab, India
| |
Collapse
|
2
|
Davidson CLG, Lott ME, Trachsel L, Wong AJ, Olson RA, Pedro DI, Sawyer WG, Sumerlin BS. Inverse Miniemulsion Enables the Continuous-Flow Synthesis of Controlled Ultra-High Molecular Weight Polymers. ACS Macro Lett 2023; 12:1224-1230. [PMID: 37624643 DOI: 10.1021/acsmacrolett.3c00431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
We report the controlled synthesis of ultra-high molecular weight (UHMW) polymers (Mn ≥ 106 g/mol) via continuous flow in a tubular reactor. At high monomer conversion, UHMW polymers in homogeneous batch polymerization exhibit high viscosities that pose challenges for employing continuous flow reactors. However, under heterogeneous inverse miniemulsion (IME) conditions, UHMW polymers can be produced within the dispersed phase, while the viscosity of the heterogeneous mixture remains approximately the same as the viscosity of the continuous phase. Conducting such IME polymerizations in flow results in a faster rate of polymerization compared to batch IME polymerizations while still providing excellent control over molecular weight up to 106 g/mol. Crucial emulsion parameters, such as particle size and stability under continuous flow conditions, were examined using dynamic light scattering. A range of poly(N,N-dimethylacrylamide) and poly(4-acryloylmorpholine) polymers with molecular weights of 104-106 g/mol (Đ ≤ 1.31) were produced by this method using water-soluble trithiocarbonates as photoiniferters.
Collapse
Affiliation(s)
- Cullen L G Davidson
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Megan E Lott
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Lucca Trachsel
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Alexander J Wong
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Rebecca A Olson
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Diego I Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
3
|
Xiang L, Zhong Z, Liu S, Shang M, Luo ZH, Su Y. Kinetic Modeling Study on the Preparation of Branched Polymers with Various Feeding Strategies. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Zihao Zhong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Saier Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Minjing Shang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Zheng-Hong Luo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Yuanhai Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
4
|
Chernikova EV, Mineeva KO. Reversible Deactivation Radical Copolymerization: Synthesis of Copolymers with Controlled Unit Sequence. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Foster H, Stenzel MH, Chapman R. PET-RAFT Enables Efficient and Automated Multiblock Star Synthesis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Foster
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
6
|
Xiang L, Zhong Z, Shang M, Su Y. Microflow synthesis of stimuli-responsive star polymers and its application on catalytic reduction. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Thompson SW, Guimarães TR, Zetterlund PB. Multiblock copolymer synthesis via aqueous RAFT polymerization-induced self-assembly (PISA). Polym Chem 2022. [DOI: 10.1039/d2py01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing RAFT PISA emulsion polymerization to synthesize high molecular weight hexablock multiblock copolymers.
Collapse
Affiliation(s)
- Steven W. Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- School of Chemistry and Physics, Queensland University of Technology (OUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Concurrent control over sequence and dispersity in multiblock copolymers. Nat Chem 2021; 14:304-312. [PMID: 34845344 DOI: 10.1038/s41557-021-00818-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Controlling monomer sequence and dispersity in synthetic macromolecules is a major goal in polymer science as both parameters determine materials' properties and functions. However, synthetic approaches that can simultaneously control both sequence and dispersity remain experimentally unattainable. Here we report a simple, one pot and rapid synthesis of sequence-controlled multiblocks with on-demand control over dispersity while maintaining a high livingness, and good agreement between theoretical and experimental molecular weights and quantitative yields. Key to our approach is the regulation in the activity of the chain transfer agent during a controlled radical polymerization that enables the preparation of multiblocks with gradually ascending (Ɖ = 1.16 → 1.60), descending (Ɖ = 1.66 → 1.22), alternating low and high dispersity values (Ɖ = 1.17 → 1.61 → 1.24 → 1.70 → 1.26) or any combination thereof. We further demonstrate the potential of our methodology through the synthesis of highly ordered pentablock, octablock and decablock copolymers, which yield multiblocks with concurrent control over both sequence and dispersity.
Collapse
|
9
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion‐like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Graeme Moad
- CSIRO Manufacturing Bag 10 Clayton South VIC 3169 Australia
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
10
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion-like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021; 60:23281-23288. [PMID: 34411397 DOI: 10.1002/anie.202108159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Synthesis of multicompositional polymeric nanoparticles of diameters 100-150 nm comprising well-defined multiblock copolymers reaching from the particle surface to the particle core was conducted using surfactant-free aqueous macroRAFT emulsion polymerization. The imposed constraints on chain mobility as well as chemical incompatibility between the blocks result in microphase separation, leading to formation of an onion-like multilayered particle morphology with individual layer thicknesses of approximately 20 nm. The approach provides considerable versatility in particle morphology design as the composition of individual layers as well as the number of layers can be tailored as desired, offering more complex particle design compared to approaches relying on self-assembly of preformed diblock copolymers within particles. Microphase separation can occur in these systems under conditions where the corresponding bulk system would not theoretically result in microphase separation.
Collapse
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thiago R Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
11
|
|
12
|
Whitfield R, Parkatzidis K, Bradford KG, Truong NP, Konkolewicz D, Anastasaki A. Low ppm CuBr-Triggered Atom Transfer Radical Polymerization under Mild Conditions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Kate G.E. Bradford
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| |
Collapse
|
13
|
Corrigan N, Trujillo FJ, Xu J, Moad G, Hawker CJ, Boyer C. Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | | | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
|
15
|
Vrijsen JH, Van de Reydt E, Junkers T. Tunable thermoresponsive β‐cyclodextrin‐based star polymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Emma Van de Reydt
- Polymer Reaction Design Group, School of Chemistry Monash University Clayton Victoria Australia
| | - Tanja Junkers
- Universiteit Hasselt, Institute for Materials Research Hasselt Belgium
- Polymer Reaction Design Group, School of Chemistry Monash University Clayton Victoria Australia
| |
Collapse
|
16
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Beyer VP, Cattoz B, Becer CR. Thiol-Bromo Click Reaction for One-Pot Synthesis of Star-Shaped Polymers. Macromol Rapid Commun 2020; 42:e2000519. [PMID: 33210395 DOI: 10.1002/marc.202000519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Star-shaped polymers have unique physical properties and they are sought after materials in industry. However, the ease of synthesis is essential for translation of these materials into large-scale applications. Herein, a highly efficient synthetic method to prepare star-shaped polymers by combination of Cu-mediated reversible deactivation radical polymerization (Cu-RDRP) and thiol-bromo click reaction is described. Well-defined linear and block polymers with a very high bromine chain end fidelity are obtained via Cu-RDRP and subsequently react with multi-functional thiol compounds. High coupling efficiencies of larger than 90% are obtained owing to the quick and efficient reaction between thiols and alkyl bromides. Moreover, the arms of the obtained star-shaped polymers are linked via thioether bonds to the core, making them susceptible for oxidative degradation.
Collapse
Affiliation(s)
- Valentin Peter Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Beatrice Cattoz
- Milton Hill Business & Technology Centre, Infineum UK Ltd., Abingdon, Oxfordshire, OX13 6BB, UK
| | - Caglar Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
18
|
Richardson RAE, Guimarães TR, Khan M, Moad G, Zetterlund PB, Perrier S. Low-Dispersity Polymers in Ab Initio Emulsion Polymerization: Improved MacroRAFT Agent Performance in Heterogeneous Media. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Murtaza Khan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
19
|
Sims MB. Controlled radical copolymerization of multivinyl crosslinkers: a robust route to functional branched macromolecules. POLYM INT 2020. [DOI: 10.1002/pi.6084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michael B Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry University of Florida Gainesville FL USA
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN USA
| |
Collapse
|
20
|
Zaquen N, Rubens M, Corrigan N, Xu J, Zetterlund PB, Boyer C, Junkers T. Polymer Synthesis in Continuous Flow Reactors. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101256] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Parkatzidis K, Wang HS, Truong NP, Anastasaki A. Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
von Tiedemann P, Yan J, Barent RD, Spontak RJ, Floudas G, Frey H, Register RA. Tapered Multiblock Star Copolymers: Synthesis, Selective Hydrogenation, and Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp von Tiedemann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
- Department of Chemical and Biological Engineering, Princeton University, Olden Street, Princeton, 08544 New Jersey, United States
| | - Jiaqi Yan
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, 27695 North Carolina, United States
| | - Ramona D. Barent
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Graduate Center, Forum Universitatis 2, 55122 Mainz, Germany
| | - Richard J. Spontak
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, 27695 North Carolina, United States
- Department of Materials Science & Engineering, North Carolina State University, Raleigh, 27695 North Carolina, United States
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Richard A. Register
- Department of Chemical and Biological Engineering, Princeton University, Olden Street, Princeton, 08544 New Jersey, United States
| |
Collapse
|
23
|
Abstract
Multiblock copolymers (MBCs) are an emerging class of synthetic polymers that exhibit different macromolecular architectures and behaviours to those of homopolymers or di/triblock copolymers.
Collapse
Affiliation(s)
- Valentin P. Beyer
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Polymer Chemistry Laboratory
| | - Jungyeon Kim
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
24
|
Wang S, Zhang H, He W, Zhou H, Tao Y. Sequence-controlled proline-based polyacrylamides via RAFT polymerization: Influence of sequence structure on polymers performances. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Xiang L, Song Y, Qiu M, Su Y. Synthesis of Branched Poly(butyl acrylate) Using the Strathclyde Method in Continuous-Flow Microreactors. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Allison-Logan S, Karimi F, Sun Y, McKenzie TG, Nothling MD, Bryant G, Qiao GG. Highly Living Stars via Core-First Photo-RAFT Polymerization: Exploitation for Ultra-High Molecular Weight Star Synthesis. ACS Macro Lett 2019; 8:1291-1295. [PMID: 35651148 DOI: 10.1021/acsmacrolett.9b00643] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Star polymers are highly functional materials that display unique properties in comparison to linear polymers, making them valuable in a wide range of applications. Currently, ultra-high molecular weight (UHMW) star polymers synthesized using controlled radical polymerization are prone to termination reactions that have undesirable effects, such as star-star coupling. Herein, we report the synthesis of the largest star polymers to date using controlled radical techniques via xanthate-mediated photo-reversible addition-fragmentation chain transfer (RAFT) polymerization using a core-first approach. Polymerization from xanthate-functionalized cores was highly living, enabling the synthesis of well-defined star polymers with molecular weights in excess of 20 MDa.
Collapse
Affiliation(s)
- Stephanie Allison-Logan
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | - Fatemeh Karimi
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | - Yongkang Sun
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | - Thomas G. McKenzie
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | - Mitchell D. Nothling
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | - Gary Bryant
- Centre for Molecular and Nanoscale Physics, School of Science, RMIT University, Melbourne 3001, Australia
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
27
|
Zhang J, Si D, Wang S, Liu H, Chen X, Zhou H, Yang M, Zhang G. Novel Organic/Inorganic Hybrid Star Polymer Surface-Crosslinked with Polyhedral Oligomeric Silsesquioxane. Macromol Res 2019. [DOI: 10.1007/s13233-020-8021-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Clothier GKK, Guimarães TR, Khan M, Moad G, Perrier S, Zetterlund PB. Exploitation of the Nanoreactor Concept for Efficient Synthesis of Multiblock Copolymers via MacroRAFT-Mediated Emulsion Polymerization. ACS Macro Lett 2019; 8:989-995. [PMID: 35619483 DOI: 10.1021/acsmacrolett.9b00534] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiblock copolymers are a class of polymeric materials with a range of potential applications. We report here a strategy for the synthesis of multiblock copolymers based on methacrylates. Reversible addition-fragmentation chain transfer (RAFT) polymerization is implemented as an emulsion polymerization to generate seed particles as nanoreactors, which can subsequently be employed in sequential RAFT emulsion polymerizations. The segregation effect allowed the synthesis of a high molar mass (>100,000 g·mol-1) decablock homopolymer at a high polymerization rate to an extent not previously achieved. A heptablock copolymer containing seven different 100 unit blocks was also successfully prepared, demonstrating how the strategy can be employed to precisely control the polymer composition at a level hitherto not accessible in environmentally friendly aqueous emulsion polymerization. Importantly, the methodology is a batch process without any intermediate purification steps, thus, rendering industrial scale up more feasible.
Collapse
Affiliation(s)
- Glenn K. K. Clothier
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Murtaza Khan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Guimarães TR, Khan M, Kuchel RP, Morrow IC, Minami H, Moad G, Perrier S, Zetterlund PB. Nano-Engineered Multiblock Copolymer Nanoparticles via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00257] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | - Hideto Minami
- Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Sébastien Perrier
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | |
Collapse
|
30
|
Dolinski ND, Page ZA, Discekici EH, Meis D, Lee IH, Jones GR, Whitfield R, Pan X, McCarthy BG, Shanmugam S, Kottisch V, Fors BP, Boyer C, Miyake GM, Matyjaszewski K, Haddleton DM, de Alaniz JR, Anastasaki A, Hawker CJ. What happens in the dark? Assessing the temporal control of photo-mediated controlled radical polymerizations. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2019; 57:268-273. [PMID: 31011240 PMCID: PMC6474683 DOI: 10.1002/pola.29247] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Abstract
A signature of photo-mediated controlled polymerizations is the ability to modulate the rate of polymerization by turning the light source 'on' and 'off.' However, in many reported systems, growth can be reproducibly observed during dark periods. In this study, emerging photo-mediated controlled radical polymerizations are evaluated with in situ 1H NMR monitoring to assess their behavior in the dark. Interestingly, it is observed that Cu-mediated systems undergo long-lived, linear growth during dark periods in organic media.
Collapse
Affiliation(s)
- Neil D. Dolinski
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Zachariah A. Page
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Emre H. Discekici
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| | - David Meis
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - In-Hwan Lee
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Glen R. Jones
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Richard Whitfield
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Xiangcheng Pan
- Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Blaine G. McCarthy
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | - Sivaprakash Shanmugam
- Center for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, (Australia)
| | | | - Brett P. Fors
- Department of Chemistry, Cornell University, Ithaca, NY 14850
| | - Cyrille Boyer
- Center for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, (Australia)
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | | | | | - Javier Read de Alaniz
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| | - Athina Anastasaki
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Craig J. Hawker
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| |
Collapse
|
31
|
Creusen G, Roshanasan A, Garcia Lopez J, Peneva K, Walther A. Bottom-up design of model network elastomers and hydrogels from precise star polymers. Polym Chem 2019. [DOI: 10.1039/c9py00731h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Well-defined high-molecular weight star polymers based on low-Tg water-soluble polymers enable bottom-up design of model network elastomers and functional hydrogels.
Collapse
Affiliation(s)
- Guido Creusen
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| | - Ardeshir Roshanasan
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| | - Javier Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry
- Jena Center of Soft Matter
- Friedrich Schiller University of Jena
- 07743 Jena
- Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Jena Center of Soft Matter
- Friedrich Schiller University of Jena
- 07743 Jena
- Germany
| | - Andreas Walther
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| |
Collapse
|
32
|
Vrijsen JH, Osiro Medeiros C, Gruber J, Junkers T. Continuous flow synthesis of core cross-linked star polymers via photo-induced copper mediated polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00134d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A convenient method to synthesize core cross-linked star polymers via a continuous flow photopolymerization process is developed.
Collapse
Affiliation(s)
- Jeroen H. Vrijsen
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
| | - Camila Osiro Medeiros
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
- Departamento de Engenharia Química
| | - Jonas Gruber
- Departamento de Química Fundamental
- Instituto de Químca da Universidade de São Paulo
- CEP 05508-000 São Paulo
- Brazil
| | - Tanja Junkers
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
- Polymer Reaction Design Group
| |
Collapse
|
33
|
van Ravensteijn BGP, Bou Zerdan R, Helgeson ME, Hawker CJ. Minimizing Star–Star Coupling in Cu(0)-Mediated Controlled Radical Polymerizations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Czarnecki M, Wessig P. Scaling Up UV-Mediated Intramolecular Photodehydro-Diels–Alder Reactions Using a Homemade High-Performance Annular Continuous-Flow Reactor. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maciej Czarnecki
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Pablo Wessig
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
35
|
Barbon SM, Rolland M, Anastasaki A, Truong NP, Schulze MW, Bates CM, Hawker CJ. Macrocyclic Side-Chain Monomers for Photoinduced ATRP: Synthesis and Properties versus Long-Chain Linear Isomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
36
|
Harrisson S. The Chain Length Distribution of an Ideal Reversible Deactivation Radical Polymerization. Polymers (Basel) 2018; 10:E887. [PMID: 30960812 PMCID: PMC6403729 DOI: 10.3390/polym10080887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 11/16/2022] Open
Abstract
The chain length distribution (CLD) of a reversible deactivation radical polymerization at full conversion is shown to be a negative binomial distribution with parameters that are simple functions of the number-average degree of polymerization and either the chain transfer constant (in the case of polymerizations that incorporate a reversible chain transfer step) or the concentrations of dormant polymer chains and deactivating agent and the rate constants of propagation and deactivation (other types of RDRP). Expressions for the CLD at intermediate conversions are also derived, and shown to be consistent with known expressions for the number-average degree of polymerization and dispersity. It is further demonstrated that these CLDs are well-approximated by negative binomial distributions with appropriate choice of parameters. The negative binomial distribution is thus a useful model for CLDs of reversible deactivation radical polymerizations.
Collapse
Affiliation(s)
- Simon Harrisson
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France.
| |
Collapse
|
37
|
Liarou E, Whitfield R, Anastasaki A, Engelis NG, Jones GR, Velonia K, Haddleton DM. Copper-Mediated Polymerization without External Deoxygenation or Oxygen Scavengers. Angew Chem Int Ed Engl 2018; 57:8998-9002. [PMID: 29757482 PMCID: PMC6055709 DOI: 10.1002/anie.201804205] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Indexed: 12/15/2022]
Abstract
As a method for overcoming the challenge of rigorous deoxygenation in copper-mediated controlled radical polymerization processes [e.g., atom-transfer radical polymerization (ATRP)], reported here is a simple Cu0 -RDRP (RDRP=reversible deactivation radical polymerization) system in the absence of external additives (e.g., reducing agents, enzymes etc.). By simply adjusting the headspace of the reaction vessel, a wide range of monomers, namely acrylates, methacrylates, acrylamides, and styrene, can be polymerized in a controlled manner to yield polymers with low dispersities, near-quantitative conversions, and high end-group fidelity. Significantly, this approach is scalable (ca. 125 g), tolerant to elevated temperatures, compatible with both organic and aqueous media, and does not rely on external stimuli which may limit the monomer pool. The robustness and versatility of this methodology is further demonstrated by the applicability to other copper-mediated techniques, including conventional ATRP and light-mediated approaches.
Collapse
Affiliation(s)
- Evelina Liarou
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | - Richard Whitfield
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | - Athina Anastasaki
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | | | - Glen R. Jones
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | - Kelly Velonia
- Department of Materials Science and TechnologyUniversity of CreteUniversity Campus Voutes71003HeraklionCreteGreece
| | - David M. Haddleton
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| |
Collapse
|
38
|
Buss BL, Miyake GM. Photoinduced Controlled Radical Polymerizations Performed in Flow: Methods, Products, and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:3931-3942. [PMID: 30559577 PMCID: PMC6293981 DOI: 10.1021/acs.chemmater.8b01359] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photoinduced controlled radical polymerizations (CRPs) have provided a variety of approaches for the synthesis of polymers possessing targeted structures, compositions, and functionalities with the added capability for spatial and temporal control, presenting the potential for new materials development. However, the scalability and reliability of these systems can be limited as a consequence of dependence on uniform irradiation of the reaction to produce well-defined products. In this perspective, we highlight the utility and promise of photo-CRP approaches through an overview of the adaptation of these methodologies to photo-flow reactor systems. Special emphasis is placed on the current state-of-the-art in polymerization scalability, reactor design, and polymer scope.
Collapse
Affiliation(s)
- Bonnie L. Buss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1101, United States
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1101, United States
| |
Collapse
|
39
|
Liarou E, Whitfield R, Anastasaki A, Engelis NG, Jones GR, Velonia K, Haddleton DM. Copper-Mediated Polymerization without External Deoxygenation or Oxygen Scavengers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Evelina Liarou
- Department of Chemistry; University of Warwick; Library Road Coventry CV4 7AL UK
| | - Richard Whitfield
- Department of Chemistry; University of Warwick; Library Road Coventry CV4 7AL UK
| | - Athina Anastasaki
- Department of Chemistry; University of Warwick; Library Road Coventry CV4 7AL UK
| | - Nikolaos G. Engelis
- Department of Chemistry; University of Warwick; Library Road Coventry CV4 7AL UK
| | - Glen R. Jones
- Department of Chemistry; University of Warwick; Library Road Coventry CV4 7AL UK
| | - Kelly Velonia
- Department of Materials Science and Technology; University of Crete; University Campus Voutes 71003 Heraklion Crete Greece
| | - David M. Haddleton
- Department of Chemistry; University of Warwick; Library Road Coventry CV4 7AL UK
| |
Collapse
|
40
|
Zhu N, Hu X, Fang Z, Guo K. Continuous Flow Photoinduced Reversible Deactivation Radical Polymerization. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Xin Hu
- College of Materials Science and Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| |
Collapse
|
41
|
De Neve J, Haven JJ, Maes L, Junkers T. Sequence-definition from controlled polymerization: the next generation of materials. Polym Chem 2018. [DOI: 10.1039/c8py01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An overview is given on the state-of-the-art in synthesis of sequence-controlled and sequence-defined oligomers and polymers.
Collapse
Affiliation(s)
- Jeroen De Neve
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| | - Joris J. Haven
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| | - Lowie Maes
- Institute for Materials Research
- Hasselt University
- 3500 Hasselt
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| |
Collapse
|
42
|
Whitfield R, Anastasaki A, Jones GR, Haddleton DM. Cu(0)-RDRP of styrene: balancing initiator efficiency and dispersity. Polym Chem 2018. [DOI: 10.1039/c8py00814k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimisation of all components within Cu(0)-wire mediated polymerisation of styrene is illustrated yielding well-defined polystyrene with enhanced initiator efficiency and dispersity at higher molecular weights.
Collapse
|
43
|
Buss BL, Beck LR, Miyake GM. Synthesis of Star Polymers using Organocatalyzed Atom Transfer Radical Polymerization Through a Core-first Approach. Polym Chem 2017; 9:1658-1665. [PMID: 29628993 DOI: 10.1039/c7py01833a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic routes to higher ordered polymeric architectures are important tools for advanced materials design and realization. In this study, organocatalyzed atom transfer radical polymerization is employed for the synthesis of star polymers through a core-first approach using a visible-light absorbing photocatalyst, 3,7-di(4-biphenyl)-1-naphthalene-10-phenoxazine. Structurally similar multifunctional initiators possessing 2, 3, 4, 6, or 8 initiating sites were used in this study for the synthesis of linear telechelic polymers and star polymers typically possessing dispersities lower than 1.5 while achieving high initiator efficiencies. Furthermore, no evidence of undesirable star-star coupling reactions was observed, even at high monomer conversions and high degrees of polymerization. The utility of this system is further exemplified through the synthesis of well-defined diblock star polymers.
Collapse
Affiliation(s)
- Bonnie L Buss
- Department of Chemistry, Colorado State University, Fort Collins, CO
| | - Logan R Beck
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO.,Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
44
|
Zhou YN, Luo ZH. Assessment of kinetics of photoinduced Fe-based atom transfer radical polymerization under conditions using modeling approach. AIChE J 2017. [DOI: 10.1002/aic.15850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yin-Ning Zhou
- Dept. of Chemical Engineering; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| | - Zheng-Hong Luo
- Dept. of Chemical Engineering; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| |
Collapse
|
45
|
Whitfield R, Anastasaki A, Nikolaou V, Jones GR, Engelis NG, Discekici EH, Fleischmann C, Willenbacher J, Hawker CJ, Haddleton DM. Universal Conditions for the Controlled Polymerization of Acrylates, Methacrylates, and Styrene via Cu(0)-RDRP. J Am Chem Soc 2017; 139:1003-1010. [DOI: 10.1021/jacs.6b11783] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Richard Whitfield
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Athina Anastasaki
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Vasiliki Nikolaou
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Glen R. Jones
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Nikolaos G. Engelis
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Emre H. Discekici
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Carolin Fleischmann
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Johannes Willenbacher
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - David M. Haddleton
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
46
|
Eckardt O, Wenn B, Biehl P, Junkers T, Schacher FH. Facile photo-flow synthesis of branched poly(butyl acrylate)s. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00013h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present the synthesis of branched poly(butyl acrylate)s using photo-induced free radical polymerization of (n/t)-butyl acrylate in the presence of tri(propylene glycol) diacrylate (TPGDA) as a crosslinker and varying amounts of dodecanethiol (DDT) as a chain transfer agent to prevent macroscopic gelation.
Collapse
Affiliation(s)
- O. Eckardt
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich-Schiller-University Jena
- D-07443 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - B. Wenn
- Polymer Reaction Design Group (PRD)
- Institute of Materials Research (IMO)
- Hasselt University
- BE-3500 Hasselt
- Belgium
| | - P. Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich-Schiller-University Jena
- D-07443 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - T. Junkers
- Polymer Reaction Design Group (PRD)
- Institute of Materials Research (IMO)
- Hasselt University
- BE-3500 Hasselt
- Belgium
| | - F. H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich-Schiller-University Jena
- D-07443 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
47
|
Bray C, Peltier R, Kim H, Mastrangelo A, Perrier S. Anionic multiblock core cross-linked star copolymers via RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c7py01062a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of (multi)block copolymers sand star (multiblock) copolymers of poly(2-acrylamido-2-methylpropane sulfonic acid) by RAFT polymerisation is reported.
Collapse
Affiliation(s)
- Caroline Bray
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Raoul Peltier
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | | | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
48
|
Wu C, Shanmugam S, Xu J, Zhu J, Boyer C. Chlorophyll a crude extract: efficient photo-degradable photocatalyst for PET-RAFT polymerization. Chem Commun (Camb) 2017; 53:12560-12563. [DOI: 10.1039/c7cc07663k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This work demonstrates use of spinach extracts for living radical polymerization bypassing catalyst synthesis/purification, degassing and catalyst removal procedures.
Collapse
Affiliation(s)
- Chenyu Wu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, School of Chemical Engineering, UNSW Australia
- Sydney
- Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia
- Sydney
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, School of Chemical Engineering, UNSW Australia
- Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, School of Chemical Engineering, UNSW Australia
- Sydney
- Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia
- Sydney
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- China
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, School of Chemical Engineering, UNSW Australia
- Sydney
- Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia
- Sydney
| |
Collapse
|
49
|
Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.06.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Engelis NG, Anastasaki A, Nurumbetov G, Truong NP, Nikolaou V, Shegiwal A, Whittaker MR, Davis TP, Haddleton DM. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nat Chem 2016; 9:171-178. [DOI: 10.1038/nchem.2634] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
|