1
|
Lai J, Sun J, Li C, Lu J, Tian Y, Liu Y, Zhao C, Zhang M. H-bond-type thermo-responsive schizophrenic copolymers: The phase transition correlation with their parent polymers and the improved protein co-assembly ability. J Colloid Interface Sci 2023; 650:1881-1892. [PMID: 37517188 DOI: 10.1016/j.jcis.2023.07.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Schizophrenic copolymers are one type of the popular smart polymers that show invertible colloidal structures in response to temperature stimulus. However, the lack of principles to predict the phase transition temperature of a schizophrenic copolymer from its corresponding parent thermo-responsive polymers limits their development. Additionally, studies on their applications remain scarce. Herein, a series of schizophrenic copolymers were synthesized by polymerization of a RAFT-made polymer precursor poly(acrylamide-co-N-acryloxysuccinimide-co-acrylic acid) (P(AAm-co-NAS-co-AAc)) with the mixture of N-isopropylmethacrylamide (NIPAm) and acrylamide (AAm) in varying molar ratios. In aqueous solution, the block P(AAm-co-NAS-co-AAc) and the block poly(NIPAm-co-AAm) exhibited upper and lower critical solution temperature (UCST and LCST) behavior, respectively. The schizophrenic copolymers featured either UCST-LCST, LCST-UCST, or only LCST thermo-responsive transition. A preliminary correlation of phase transition between the schizophrenic copolymers and their parent polymers was summarized. Furthermore, the co-assembly of the schizophrenic copolymers and proteins were conducted and the kinetics of protein loading and protein activity were investigated, which showed that the schizophrenic copolymers were efficient platforms for protein co-assembly with ultra-high protein loading while preserving the protein bioactivities. Additionally, all the materials were non-toxic towards NIH 3T3 and MCF-7 cells. This work offers the prospects of the schizophrenic polymers in soft colloidal and assembly systems, particularly in guiding the design of new materials and their use in biomedical applications.
Collapse
Affiliation(s)
- Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianlei Lu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuting Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
2
|
Xin F, Lyu Q. A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels 2022; 9:gels9010007. [PMID: 36661775 PMCID: PMC9858193 DOI: 10.3390/gels9010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels, as a series of three-dimensional, crosslinked, hydrophilic network polymers, exhibit extraordinary properties in softness, mechanical robustness and biocompatibility, which have been extensively utilized in various fields, especially for electronic devices. However, since hydrogels contain plenty of water, the mechanical and electrochemical properties are susceptible to temperature. The thermal characteristics of hydrogels can significantly affect the performance of flexible electronic devices. In this review, recent research on the thermal characteristics of hydrogels and their applications in electronic devices is summarized. The focus of future work is also proposed. The thermal stability, thermoresponsiveness and thermal conductivity of hydrogels are discussed in detail. Anti-freezing and anti-drying properties are the critical points for the thermal stability of hydrogels. Methods such as introducing soluble ions and organic solvents into hydrogels, forming ionogels, modifying polymer chains and incorporating nanomaterials can improve the thermal stability of hydrogels under extreme environments. In addition, the critical solution temperature is crucial for thermoresponsive hydrogels. The thermoresponsive capacity of hydrogels is usually affected by the composition, concentration, crosslinking degree and hydrophilic/hydrophobic characteristics of copolymers. In addition, the thermal conductivity of hydrogels plays a vital role in the electronics applications. Adding nanocomposites into hydrogels is an effective way to enhance the thermal conductivity of hydrogels.
Collapse
Affiliation(s)
- Fei Xin
- Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi’an 710071, China
- Correspondence:
| | - Qiang Lyu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
3
|
Chen KF, Zhang Y, Lin J, Chen JY, Lin C, Gao M, Chen Y, Liu S, Wang L, Cui ZK, Jia YG. Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107374. [PMID: 35129310 DOI: 10.1002/smll.202107374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Specific recognition and strong affinities of bacteria receptors with the host cell glycoconjugates pave the way to control the bacteria aggregation and kill bacteria. Herein, using aggregation-induced emission (AIE) molecules decorated upper critical solution temperature (UCST) polyvalent scaffold (PATC-GlcN), an approach toward visualizing bacteria aggregation and controlling bacteria-polyvalent scaffolds affinities under temperature stimulus is described. Polyvalent scaffolds with diblocks, one UCST block PATC of polyacrylamides showing a sharp UCST transition and typical AIE behavior, the second bacteria recognition block GlcN of hydrophilic glucosamine modified polyacrylamide, are prepared through a reversible addition and fragmentation chain transfer polymerization. Aggregated chain conformation of polyvalent scaffolds at temperature below UCST induces the aggregation of E. coli ATCC8739, because of the high density of glucosamine moieties, whereas beyond UCST, the hydrophilic state of the scaffolds dissociates the bacteria aggregation. The sweet-talking of bacteria toward the polyvalent scaffolds can be visualized by the fluorescent imaging technique, simultaneously. Due to the specific recognition of polyvalent scaffolds with bacteria, the photothermal agent IR780 loaded PATC-GlcN shows the targeted killing ability toward E. coli ATCC8739 in vitro and in vivo under NIR radiation.
Collapse
Affiliation(s)
- Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yiqing Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jun-You Chen
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Aliakseyeu A, Hlushko R, Sukhishvili SA. Nonionic star polymers with upper critical solution temperature in aqueous solutions. Polym Chem 2022. [DOI: 10.1039/d2py00216g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Novel UCST star poly(2-ureido methacrylates) synthesized via the ARGET ATRP technique showed enhanced trapping abilities of model drug molecules.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
5
|
Zhang J, Li S, Wang Z, Liu P, Zhao Y. Multitunable Thermoresponsive and Aggregation Behaviors of Linear and Cyclic Polyacrylamide Copolymers Comprising Heterofunctional Y Junctions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jian Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Jia X, Ji H, Zhang G, Xing J, Shen S, Zhou X, Sun S, Wu X, Yu D, Wyman I. Smart Self-Cleaning Membrane via the Blending of an Upper Critical Solution Temperature Diblock Copolymer with PVDF. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38712-38721. [PMID: 34369743 DOI: 10.1021/acsami.1c10687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poly(2,2,2-trifluoroethyl methacrylate)-b-poly(imidazoled glycidyl methacrylate-co-diethylene glycol methyl ether methacrylate) (PTFEMA-b-P(iGMA-co-MEO2MA)) containing an upper critical solution temperature (UCST) polymer chain was prepared and blended with poly(vinylidene fluoride) (PVDF) to produce a thermoresponsive membrane with smart self-cleaning performance. The successful preparation of the membrane was demonstrated by attenuated total reflection-Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy characterization. The membrane shows UCST performance, and its flux changes with the filtrate temperature as the UCST polymer chain stretches out and contracts in response to various temperatures. In addition, the UCST polymer chain can disrupt the foulant and push it away from the membrane when the temperature is above the UCST and thus enables membranes to exhibit a smart self-cleaning behavior. To the best of our knowledge, this work is the first report of a smart self-cleaning membrane based on the blending of a diblock copolymer containing a UCST polymer chain with PVDF.
Collapse
Affiliation(s)
- Xinying Jia
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Hailan Ji
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Ganwei Zhang
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Jiale Xing
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Shusu Shen
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiaoji Zhou
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Suling Sun
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Science, Hangzhou 310021, People's Republic of China
| | - Xu Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Danfeng Yu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
7
|
Molza AE, Gao P, Jakpou J, Nicolas J, Tsapis N, Ha-Duong T. Simulations of the Upper Critical Solution Temperature Behavior of Poly(ornithine- co-citrulline)s Using MARTINI-Based Coarse-Grained Force Fields. J Chem Theory Comput 2021; 17:4499-4511. [PMID: 34101464 DOI: 10.1021/acs.jctc.1c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ornithine-co-citrulline)s are ureido-based polymers, which were shown to exhibit tunable upper critical solution temperature (UCST) behavior, a property that can be exploited to develop thermoresponsive nanoparticles for controlled drug delivery systems. To gain insight into the driving forces that govern the formation and dissolution processes of poly(ornithine-co-citrulline) nanoparticles, a molecular dynamics (MD) simulation study has been carried out using MARTINI-based protein coarse-grained models. Multi-microsecond simulations at temperatures ranging from 280 to 370 K show that the fully reparametrized version 3.0 of MARTINI force field is able to capture the dependence on temperature of poly(ornithine-co-citrulline) aggregation and dissolution, while version 2.2 could not account for it. Furthermore, the phase separation observed in these simulations allowed us to extrapolate a phase diagram based on the Flory-Huggins theory of polymer solution, which could help in future rational design of drug delivery nanoparticles based on poly(amino acid)s.
Collapse
Affiliation(s)
| | - Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Justine Jakpou
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
8
|
Jia YG, Chen KF, Gao M, Liu S, Wang J, Chen X, Wang L, Chen Y, Song W, Zhang H, Ren L, Zhu XX, Tang BZ. Visualizing phase transition of upper critical solution temperature (UCST) polymers with AIE. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9893-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Zhao C, Dolmans L, Zhu XX. Thermoresponsive Behavior of Poly(acrylic acid-co-acrylonitrile) with a UCST. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00794] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chuanzhuang Zhao
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Louis Dolmans
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
10
|
Zhao C, Ma Z, Zhu X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Poly(imidazoled glycidyl methacrylate-co-diethyleneglycol methyl ether methacrylate) – A new copolymer with tunable LCST and UCST behavior in water. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Wang N, Seymour BT, Lewoczko EM, Kent EW, Chen ML, Wang JH, Zhao B. Zwitterionic poly(sulfobetaine methacrylate)s in water: from upper critical solution temperature (UCST) to lower critical solution temperature (LCST) with increasing length of one alkyl substituent on the nitrogen atom. Polym Chem 2018. [DOI: 10.1039/c8py01211c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increasing the alkyl length on nitrogen of the polymer changes behaviour from UCST, to soluble, LCST, and insoluble.
Collapse
Affiliation(s)
- Ning Wang
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
- Research Center for Analytical Sciences
| | | | | | - Ethan W. Kent
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | - Ming-Li Chen
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
| | - Bin Zhao
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
13
|
Wolf T, Rheinberger T, Simon J, Wurm FR. Reversible Self-Assembly of Degradable Polymersomes with Upper Critical Solution Temperature in Water. J Am Chem Soc 2017; 139:11064-11072. [DOI: 10.1021/jacs.7b02723] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Wolf
- Max-Planck-Institut für Polymerforschung, Ackermannweg
10, 55128 Mainz, Germany
| | - Timo Rheinberger
- Max-Planck-Institut für Polymerforschung, Ackermannweg
10, 55128 Mainz, Germany
| | - Johanna Simon
- Max-Planck-Institut für Polymerforschung, Ackermannweg
10, 55128 Mainz, Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
14
|
Jia YG, Yu Q, Ma Z, Zhang M, Zhu XX. Tunable Upper Critical Solution Temperatures for Acrylamide Copolymers with Bile Acid Pendants. Biomacromolecules 2017; 18:2663-2668. [DOI: 10.1021/acs.biomac.7b00860] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong-Guang Jia
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Qixuan Yu
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Zhiyuan Ma
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Meng Zhang
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
15
|
Thanneeru S, Duay SS, Jin L, Fu Y, Angeles-Boza AM, He J. Single Chain Polymeric Nanoparticles to Promote Selective Hydroxylation Reactions of Phenol Catalyzed by Copper. ACS Macro Lett 2017; 6:652-656. [PMID: 35650866 DOI: 10.1021/acsmacrolett.7b00300] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-containing single chain polymeric nanoparticles (SCPNs) can be used as synthetic mimics of metalloenzymes. Currently, the role of the folded polymer backbones on the activity and selectivity of metal sites is not clear. Herein, we report our findings on how polymeric frameworks modulate the coordination of Cu sites and the catalytic activity/selectivity of Cu-containing SCPNs mimicking monophenol hydroxylation reactions. Imidazole-functionalized copolymers of poly(methyl methacrylate-co-3-imidazolyl-2-hydroxy propyl methacrylate) were used for intramolecular Cu-imidazole binding that triggered the self-folding of polymers. Polymer chains imposed steric hindrance which yielded unsaturated Cu sites with an average coordination number of 3.3. Cu-containing SCPNs showed a high selectivity for the hydroxylation reaction of phenol to catechol, >80%, with a turnover frequency of >870 h-1 at 60 °C. The selectivity was largely influenced by the flexibility of the folded polymer backbone where a more flexible polymer backbone allows the cooperative catalysis of two Cu sites. The second coordination sphere provided by the folded polymer that has been less studied is therefore critical in the design of active mimics of metalloenzymes.
Collapse
Affiliation(s)
- Srinivas Thanneeru
- Department of Chemistry, and ‡Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lei Jin
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Youjun Fu
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jie He
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
16
|
Zhang H, Zhang J, Dai W, Zhao Y. Facile synthesis of thermo-, pH-, CO2- and oxidation-responsive poly(amido thioether)s with tunable LCST and UCST behaviors. Polym Chem 2017. [DOI: 10.1039/c7py01351e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-responsive N-substituted poly(amido thioether) copolymers synthesized by one-pot amine–thiol–acrylate polyaddition could exhibit composition-dependent and stimuli-triggered single or double thermoresponsivity.
Collapse
Affiliation(s)
- Hongcan Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wenxue Dai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|