1
|
Naveenkumar PM, Roemling LJ, Sultan U, Vogel N. Fabrication of Spherical Colloidal Supraparticles via Membrane Emulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22245-22255. [PMID: 39383325 DOI: 10.1021/acs.langmuir.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Colloidal supraparticles are micrometer-scale assemblies of primary particles. These supraparticles have potential application in photonic materials, catalysis, gas adsorption, and drug delivery. Thus, the synthesis of colloidal supraparticles with a narrow size distribution and high yield has become essential. Here, we demonstrate membrane emulsification as a high-throughput approach for fabricating spherical supraparticles with a narrow size distribution and control over particle size and crystallinity. Spherical supraparticles with well-ordered surface structures are synthesized by generating emulsion droplets of an aqueous colloidal dispersion in fluorocarbon oil using a Shirasu porous glass membrane followed by the consolidation of particles through water removal within the emulsion. We systematically investigate process parameters, including the flow rate of the particle dispersion, the particle concentration, and the average pore diameter of the membrane, on the mean size and size distribution of the supraparticles, revealing key factors governing supraparticle properties and production throughput. A comparative evaluation with commonly employed methods highlights the advantage of membrane emulsification, which combines well-defined internal structure and controlled supraparticle sizes with comparably high yields on the order of tens of grams per day. Importantly, in contrast to widely used droplet-based microfluidics, membrane emulsification allows fabrication of supraparticles in nonfluorinated oil. Overall, membrane emulsification offers a simple yet versatile method for fabricating colloidal supraparticles with high quality and yield and may serve as a bridge between existing high-precision techniques, such as droplet-based microfluidics, and high-throughput processes with less control, such as spray-drying.
Collapse
Affiliation(s)
- Parinamipura M Naveenkumar
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas J Roemling
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Umair Sultan
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
2
|
In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Song W. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci 2022; 10:5369-5390. [PMID: 35861101 DOI: 10.1039/d2bm00719c] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porous organic polymers have received considerable attention in recent years because of their applicability as biomaterials. In particular, their hierarchical pore structures, variable morphologies, and tunable biological properties make them suitable as drug-delivery systems. In this review, the synthetic and post forming/control methods including templated methods, template-free methods, mechanical methods, electrospun methods, and 3D printing methods for controlling the hierarchical structures and morphologies of porous organic polymers are discussed, and the different methods affecting their specific surface areas, hierarchical structures, and unique morphologies are highlighted in detail. In addition, we discuss their applications in drug encapsulation and the development of stimuli (pH, heat, light, and dual-stimuli)-responsive materials, focusing on their use for targeted drug release and as therapeutic agents. Finally, we present an outlook concerning the research directions and applications of porous polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Anuraj Varyambath
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Yuanchen Ding
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Bailiang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Xinyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China. .,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Sasaoka M, Kawamura A, Miyata T. Core–shell Microgels Having Zwitterionic Hydrogel Core and Temperature-responsive Shell Prepared via Inverse Miniemulsion RAFT Polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive core–shell microgels are of significant interest because of their fascinating applications due to the different swelling/shrinkage properties of their core and shell networks. Because such stimuli-responsive core–shell microgels are...
Collapse
|
5
|
Chapman R, Stenzel MH. All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles. J Am Chem Soc 2019; 141:2754-2769. [PMID: 30621398 DOI: 10.1021/jacs.8b10338] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes are extremely useful in many industrial and pharmaceutical areas due to their ability to catalyze reactions with high selectivity. In order to extend their lifetime, significant efforts have been made to increase their stability using protein- or medium engineering as well as by chemical modification. Many researchers have explored the immobilization of enzymes onto carriers, or entrapment within a matrix, framework or nanoparticle with the hope of constricting the movement of the enzyme and shielding it from aggressive environments, thus delaying the denaturation. These strategies often balance three competing interests: (i) maintaining high enzymatic activity, (ii) ensuring good long-term stability against temperature, dehydration, organic solvents, and or aggressive pH, and (iii) enabling a tuning or reversible switching of enzyme activity. In most cases, multiple enzymes will be contained within a single nanoparticle or matrix, but in recent years researchers have begun to wrap up individual enzymes within single enzyme nanoparticles (SENs). In these nanoparticles the enzyme is stabilized by a thin shell, typically a polymer, prepared either by in situ polymerization from the enzyme surface or by assembling a preformed polymer around it. Because of the increased control over the environment directly around the enzyme, and the possibility of more directly controlling substrate diffusion, many SENs show remarkable stability while retaining high initial activities even for quite fragile enzymes. Moreover, the activity of the enzyme can often be more easily fine-tuned by adjusting the layer properties. We postulate that this emerging field will offer exciting and elegant opportunities to both extend the catalytic lifetime of enzymes in aggressive solvents, temperatures and pH, and enable their activity to be switched on and off on demand by modulation of the outer material layer.
Collapse
Affiliation(s)
- Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
6
|
Ishizuka F, Stenzel MH, Zetterlund PB. Microcapsule synthesis via RAFT photopolymerization in vegetable Oil as a green solvent. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fumi Ishizuka
- School of Chemical Engineering, Centre for Advanced Macromolecular Design, The University of New South Wales; Sydney New South Wales 2052 Australia
| | - Martina H. Stenzel
- School of Chemistry, Centre for Advanced Macromolecular Design; The University of New South Wales; Sydney New South Wales 2052 Australia
| | - Per B. Zetterlund
- School of Chemical Engineering, Centre for Advanced Macromolecular Design, The University of New South Wales; Sydney New South Wales 2052 Australia
| |
Collapse
|
7
|
Liu J, Fan X, Xue Y, Liu Y, Song L, Wang R, Zhang H, Zhang Q. Fabrication of polymer capsules by an original multifunctional, active, amphiphilic macromolecule, and its application in preparing PCM microcapsules. NEW J CHEM 2018. [DOI: 10.1039/c8nj00546j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Based on our recent discovery that D-PGMA solution showed excellent amphiphilic and reinitiation properties, an eco-friendly, facile and scalable method to prepare polymeric capsules was proposed.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Xinlong Fan
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Ying Xue
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Yibin Liu
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Lixun Song
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Rumin Wang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Hepeng Zhang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Qiuyu Zhang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| |
Collapse
|
8
|
Li Q, Razzaque S, Jin S, Tan B. Morphology design of microporous organic polymers and their potential applications: an overview. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9089-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|