1
|
Song Y, Zou Y, Chen T, Zhang Z, Zhang W. Cobalt-Catalyzed Asymmetric Hydrogenation of α-Hydroxy Ketones Enabled by a Carboxylic Acid Additive Promotion Strategy. Angew Chem Int Ed Engl 2025:e202504159. [PMID: 40265970 DOI: 10.1002/anie.202504159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Highly enantioselective hydrogenation of α-hydroxy ketones was achieved by applying the catalytic combination of cobalt acetate and chiral Ph-BPE ligand, supplemented by a carboxylic acid additive promotion strategy. The carboxylic acid additive significantly increases both reactivity and enantioselectivity, allowing for the highly efficient generation of chiral 1,2-diols with up to 99% ee. The application utility is proved through derivations and a total synthesis of (R)-(-)-eliprodil. Mechanistic studies, including control experiments and DFT calculations, support the proposed catalytic mechanism and explain the origin of enantioselectivity.
Collapse
Affiliation(s)
- Yuxi Song
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Yin C, Jiang YF, Huang F, Xu CQ, Pan Y, Gao S, Chen GQ, Ding X, Bai ST, Lang Q, Li J, Zhang X. A 13-million turnover-number anionic Ir-catalyst for a selective industrial route to chiral nicotine. Nat Commun 2023; 14:3718. [PMID: 37349291 DOI: 10.1038/s41467-023-39375-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Developing catalysts with both useful enantioselectivities and million turnover numbers (TONs) for asymmetric hydrogenation of ketones is attractive for industrial production of high-value bioactive chiral entities but remains a challenging. Herein, we report an ultra-efficient anionic Ir-catalyst integrated with the concept of multidentate ligation for asymmetric hydrogenation of ketones. Biocatalysis-like efficacy of up to 99% ee (enantiomeric excess), 13,425,000 TON (turnover number) and 224 s-1 TOF (turnover frequency) were documented for benchmark acetophenone. Up to 1,000,000 TON and 99% ee were achieved for challenging pyridyl alkyl ketone where at most 10,000 TONs are previously reported. The anionic Ir-catalyst showed a novel preferred ONa/MH instead of NNa/MH bifunctional mechanism. A selective industrial route to enantiopure nicotine has been established using this anionic Ir-catalyst for the key asymmetric hydrogenation step at 500 kg batch scale, providing 40 tons scale of product.
Collapse
Affiliation(s)
- Congcong Yin
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ya-Fei Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fanping Huang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yingmin Pan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- Center for Carbon-Neutrality Catalysis Engineering and Institute of Carbon Neutral Technology, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China
| | - Shuang Gao
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gen-Qiang Chen
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaobing Ding
- Shenzhen Catalys Technology Co., Ltd, Shenzhen, 518100, China
| | - Shao-Tao Bai
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
- Center for Carbon-Neutrality Catalysis Engineering and Institute of Carbon Neutral Technology, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China.
| | - Qiwei Lang
- Shenzhen Catalys Technology Co., Ltd, Shenzhen, 518100, China.
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| | - Xumu Zhang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
New palladium(II) complexes with ferrocenyl Schiff bases in the hydrogenation of aromatic ketones. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Discovery and development of ferrocene-based tetradentate ligands for Ir-catalysed asymmetric hydrogenation of ketone. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
5
|
Wu C, Ma B, Chen GQ, Zhang X. Highly efficient and enantioselective synthesis of β-heteroaryl amino alcohols via Ru-catalyzed asymmetric hydrogenation. Chem Commun (Camb) 2022; 58:12696-12699. [DOI: 10.1039/d2cc03701g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a highly enantioselective hydrogenation of α-N-heteroaryl ketones catalyzed by chiral ruthenium catalysts, furnishing β-heteroaryl amino alcohols in superb yields and enantioselectivities (up to 99% yield and up to 99% ee).
Collapse
Affiliation(s)
- Chao Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baode Ma
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Xumu Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
6
|
Kilogram synthesis of (R)-(-)-denopamine by Ir/f-amphox catalyzed asymmetric hydrogenation. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Wang J, Lin X, Shao PL, Song J, Wen J, Zhang X. Double Asymmetric Hydrogenation of α-Iminoketones: Facile Synthesis of Enantiopure Vicinal Amino Alcohols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiang Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town, Nanshan District, Shenzhen 518055, China
| | - Xin Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- College of Innovation and Entrepreneurship, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Pan-Lin Shao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- College of Innovation and Entrepreneurship, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jingyuan Song
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
8
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Zhang F, Zeng J, Gao M, Wang L, Chen GQ, Lu Y, Zhang X. Concise, scalable and enantioselective total synthesis of prostaglandins. Nat Chem 2021; 13:692-697. [PMID: 34045714 DOI: 10.1038/s41557-021-00706-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/14/2021] [Indexed: 01/01/2023]
Abstract
Prostaglandins are among the most important natural isolates owing to their broad range of bioactivities and unique structures. However, current methods for the synthesis of prostaglandins suffer from low yields and lengthy steps. Here, we report a practicability-oriented synthetic strategy for the enantioselective and divergent synthesis of prostaglandins. In this approach, the multiply substituted five-membered rings in prostaglandins were constructed via the key enyne cycloisomerization with excellent selectivity (>20:1 d.r., 98% e.e.). The crucial chiral centre on the scaffold of the prostaglandins was installed using the asymmetric hydrogenation method (up to 98% yield and 98% e.e.). From our versatile common intermediates, a series of prostaglandins and related drugs could be produced in two steps, and fluprostenol could be prepared on a 20-gram scale.
Collapse
Affiliation(s)
- Fuhao Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.,Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jingwen Zeng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Mohan Gao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Linzhou Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Gen-Qiang Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China. .,Medi-X, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China.
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China. .,Medi-X, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
10
|
Wang H, Wen J, Zhang X. Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2021; 121:7530-7567. [PMID: 34014646 DOI: 10.1021/acs.chemrev.1c00075] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric hydrogenation (AH) of double bonds has been one of the most effective methods for the preparation of chiral molecules and for the synthesis of important chiral building blocks. In the past 60 years, noble metals with bidentate ligands have shown marvelous reactivity and enantioselectivity in asymmetric hydrogenation of a series of prochiral substrates. In recent years, developing chiral tridentate ligands has played an increasingly important role in AH. With modular frameworks and a variety of functionalities on the side arms, chiral tridentate ligand complexes enable both reactivities and stereoselectivities. Although great achievements have been made for noble metal catalysts with chiral tridentate ligands since the 1990s, the design of chiral tridentate ligands for earth abundant metal catalysts has still been in high demand. This review summarizes the development of chiral tridentate ligands for homogeneous asymmetric hydrogenation. The philosophy of ligand design and the reaction mechanisms are highlighted and discussed as well.
Collapse
Affiliation(s)
- Heng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Wu C, Wang J, Zhang X, Zhang R, Ma B. Highly chemoselective hydrogenation of cyclic imides to ω-hydroxylactams or ω-hydroxyamides catalyzed by iridium catalysts. Org Chem Front 2021. [DOI: 10.1039/d1qo01100f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several novel ferrocene-based PNN ligands were prepared, which were found to be highly effective catalysts (TON up to 50 000) for the homogeneous hydrogenation of cyclic imides with iridium.
Collapse
Affiliation(s)
- Chao Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Jiang Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Runtong Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Baode Ma
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
12
|
|
13
|
Chelate ring size effects of Ir(P,N,N) complexes: Chemoselectivity switch in the asymmetric hydrogenation of α,β-unsaturated ketones. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Wang H, Zhang Y, Yang T, Guo X, Gong Q, Wen J, Zhang X. Chiral Electron-Rich PNP Ligand with a Phospholane Motif: Structural Features and Application in Asymmetric Hydrogenation. Org Lett 2020; 22:8796-8801. [DOI: 10.1021/acs.orglett.0c03159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Heng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yao Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tilong Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaochong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Quan Gong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Wang J, Shao P, Lin X, Ma B, Wen J, Zhang X. Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiang Wang
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School University Town Nanshan District Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Pan‐Lin Shao
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Xin Lin
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Baode Ma
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Jialin Wen
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| |
Collapse
|
16
|
Wang J, Shao P, Lin X, Ma B, Wen J, Zhang X. Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined. Angew Chem Int Ed Engl 2020; 59:18166-18171. [DOI: 10.1002/anie.202006661] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/17/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Jiang Wang
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School University Town Nanshan District Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Pan‐Lin Shao
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Xin Lin
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Baode Ma
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Jialin Wen
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| |
Collapse
|
17
|
Huo S, Wang Q, Zuo W. An iron variant of the Noyori hydrogenation catalyst for the asymmetric transfer hydrogenation of ketones. Dalton Trans 2020; 49:7959-7967. [PMID: 32497166 DOI: 10.1039/d0dt01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the design of a new iron catalyst for the asymmetric transfer hydrogenation of ketones. This type of iron catalyst combines the structural characteristics of the Noyori hydrogenation catalyst (an axially chiral 2,2'-bis(phosphino)-1,1'-binaphthyl fragment and the metal-ligand bifunctional motif) and an ene(amido) group that can activate the iron center. After activation by 8 equivalents of potassium tert-butoxide, (SA,RP,SS)-7a and (SA,RP,SS)-7b are active but nonenantioselective catalysts for the transfer hydrogenation of acetophenone and α,β-unsaturated aldehydes at room temperature in isopropanol. A maximum turnover number of 14480 was observed for (SA,RP,SS)-7a in the reduction of acetophenone. The right combination of the stereochemistry of the axially chiral 2,2'-bis(phosphino)-1,1'-binaphthyl group and the carbon-centered chiral amine-imine moiety in (SA,RP,RR)-7b' afforded an enantioselective catalyst for the preparation of chiral alcohols with moderate to good yields and a broad functional group tolerance.
Collapse
Affiliation(s)
- Shangfei Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of materials science and engineering, Donghua University, China.
| | | | | |
Collapse
|
18
|
Iridium-Catalyzed Asymmetric Hydrogenation. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Tao L, Yin C, Dong XQ, Zhang X. Efficient synthesis of chiral β-hydroxy sulfones via iridium-catalyzed hydrogenation. Org Biomol Chem 2019; 17:785-788. [DOI: 10.1039/c8ob02923g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A highly efficient Ir-catalyzed asymmetric hydrogenation of prochiral β-keto sulfones was successfully developed, affording a series of chiral β-hydroxy sulfones with excellent results (up to >99% conversion, 99% yield, >99% ee, and 20 000 TON).
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Congcong Yin
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| |
Collapse
|
20
|
Yin C, Dong XQ, Zhang X. Iridium/f-Amphol-catalyzed Efficient Asymmetric Hydrogenation of Benzo-fused Cyclic Ketones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Congcong Yin
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei; 430072 People's Republic of China
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei; 430072 People's Republic of China
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei; 430072 People's Republic of China
- Department of Chemistry and Shenzhen Grubbs Institute; Southern University of Science and Technology, Shenzhen; Guangdong 518055 People's Republic of China
| |
Collapse
|
21
|
Liu B, Yan J, Huang R, Wang W, Jin Z, Zanoni G, Zheng P, Yang S, Chi YR. Kinetic Resolution of 1,2-Diols via NHC-Catalyzed Site-Selective Esterification. Org Lett 2018; 20:3447-3450. [DOI: 10.1021/acs.orglett.8b01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jiekuan Yan
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ruoyan Huang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Weihong Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Pengcheng Zheng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Song Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
22
|
Xue X, Chen P, Xu P, Wang Y. Highly efficient and recyclable chiral Pt nanoparticle catalyst for enantioselective hydrogenation of activated ketones. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Yin C, Wu W, Hu Y, Tan X, You C, Liu Y, Chen Z, Dong XQ, Zhang X. Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800267] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Congcong Yin
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Weilong Wu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Yang Hu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Xuefeng Tan
- Department of Chemistry; Southern University of Science and Technology; Shenzhen, Guangdong 518055 People's Republic of China
| | - Cai You
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Yuanhua Liu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Ziyi Chen
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Xumu Zhang
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
- Department of Chemistry; Southern University of Science and Technology; Shenzhen, Guangdong 518055 People's Republic of China
| |
Collapse
|
24
|
Ir-catalyzed asymmetric hydrogenation of simple ketones with chiral ferrocenyl P,N,N-ligands. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Hu Y, Yin X, Chen Z, Dong XQ, Zhang X. Highly enantioselective Ir/f-amphox-catalyzed hydrogenation of ketoamides: efficient access to chiral hydroxy amides. Org Chem Front 2018. [DOI: 10.1039/c8qo00307f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric synthesis of chiral hydroxy amides has been successfully accomplished by asymmetric hydrogenation of prochiral α-, β-, γ-, δ-keto amides catalyzed by Ir/f-amphox with up to >99% conversion and >99% ee.
Collapse
Affiliation(s)
- Yang Hu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- 430072
- P. R. China
| | - Xuguang Yin
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- 430072
- P. R. China
| | - Ziyi Chen
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- 430072
- P. R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- 430072
- P. R. China
| | - Xumu Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- 430072
- P. R. China
| |
Collapse
|
26
|
Wu W, You C, Yin C, Liu Y, Dong XQ, Zhang X. Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium–f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution. Org Lett 2017; 19:2548-2551. [DOI: 10.1021/acs.orglett.7b00844] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Weilong Wu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Cai You
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Congcong Yin
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yuanhua Liu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiu-Qin Dong
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xumu Zhang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Department
of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
27
|
Hu Y, Wu W, Dong XQ, Zhang X. Efficient access to chiral 1,2-amino alcohols via Ir/f-amphox-catalyzed asymmetric hydrogenation of α-amino ketones. Org Chem Front 2017. [DOI: 10.1039/c7qo00237h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully developed the iridium/f-amphox-catalyzed asymmetric hydrogenation of α-amino ketones to prepare chiral 1,2-amino alcohols with excellent results.
Collapse
Affiliation(s)
- Yang Hu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Weilong Wu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Xumu Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
- Department of Chemistry
| |
Collapse
|