1
|
Shahedi M, Ahrari F, Mohammadi M. Multi-Component Reactions in Protein Modification and Immobilization. Chembiochem 2025; 26:e202401010. [PMID: 40067953 DOI: 10.1002/cbic.202401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Protein modification/immobilization has been introduced as a large toolbox for creating a myriad of engineered proteins with profound implications for various scientific and industrial applications. Proteins immobilization techniques are generally performed through protein fixation in/to heterogeneous materials or via inter cross-linking of protein molecules, enabling the development of biocatalysts, biosensors, and drug delivery systems. On the other hand, chemical modification of proteins offers tailored changes in their functionality, enhances protein performance, extends their shelf life, and enables their specific binding interactions. The choice of immobilization or modification technique depends on the significance of various factors for the final product. Chemical coupling methods that create covalent bonds are commonly used for both proposes. Multi-component reactions are particularly effective because they operate under mild conditions to maintain protein functionality while simultaneously introducing multiple functional groups. This review provides an overview of multi-component reactions employed for the immobilization and modification of proteins.
Collapse
Affiliation(s)
- Mansour Shahedi
- Bioprocess Engineering Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Faezeh Ahrari
- Bioprocess Engineering Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Oudi A, Esmaeili AA, Habibi A. One-pot three-component synthesis of azaspirononatriene derivatives. Sci Rep 2025; 15:15174. [PMID: 40307286 PMCID: PMC12043965 DOI: 10.1038/s41598-025-97860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
The present investigation has introduced a new class of isocyanide/acetylene-based multicomponent reactions (IAMCRs). These are a robust technique for efficiently synthesizing intricate spiro architectures through a zwitterionic adduct. The coupling reaction between the "in situ" generated dipoles of the isocyanide-acetylenic ester adducts and 3-alkyl-4-arylidene-isoxazol-5(4H)-one derivative presents a highly effective synthetic pathway for obtaining novel 1-oxo-2-oxa-3-azaspiro[4.4]nona-3,6,8-triene heterocycles. The broad range of substrates, standard experimental conditions, straightforward procedure, and impressive yields make our catalyst-free three-component approach highly practical and green, as it remarkably offers step-, time- and cost-effectiveness based on the green metrics.
Collapse
Affiliation(s)
- Ali Oudi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Ali Esmaeili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Azizollah Habibi
- Department of Chemistry, Faculty of Science, Kharazmi University, Tehran, Iran
| |
Collapse
|
3
|
Ogawa A, Yamamoto Y. Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis. Beilstein J Org Chem 2024; 20:2114-2128. [PMID: 39224232 PMCID: PMC11368054 DOI: 10.3762/bjoc.20.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Isocyanide is a promising synthetic reagent not only as a one-carbon homologation reagent but also as a nitrogen source for nitrogen-containing molecules. Because of their isoelectronic structure with carbon monoxide, isocyanides also react with nucleophiles, electrophiles, carbon radicals, and transition metal reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified with a variety of heteroatoms. In this Perspective, we review the addition and cyclization reactions of heteroatom radicals with isocyanides and discuss the synthetic prospects of the reaction of isocyanides with heteroatom radicals.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
4
|
He YW, Huang L, Huang K, Yan CG, Sun J, Han Y. Construction of Diverse Fused Chromene Frameworks via Isocyanide-Based Three-Component Reaction. J Org Chem 2024; 89:10854-10866. [PMID: 38993063 DOI: 10.1021/acs.joc.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A convenient synthetic protocol for diverse fused chromenes was successfully developed by a three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and various cyclic 1,3-dipolarophiles containing o-hydroxyphenyl group. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and 3-(o-hydroxyarylidene)indolin-2-ones in tetrahydrofuran at 60 °C resulted in unique functionalized spiro[cyclobuta[c]chromene-1,3'-indolines] in good yields and with high diastereoselectivity. However, the similar three-component reaction with 2-(5-halo-2-hydroxyarylidene)indolin-2-ones afforded unexpected chain products in satisfactory yields. In addition, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and 2-(o-hydroxyarylidene)-1,3-indanediones in tetrahydrofuran at 60 °C resulted in complex indeno[2',1':5,6]pyrano[3,4-c]chromene derivatives in high yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Wei He
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Li Huang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Kun Huang
- Jiangsu Lianhuan Pharmaceutical Co., Ltd., Yangzhou 225000, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | | | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
5
|
Chen XY, Han Y, Sun J, Yan CG. Rapid construction of tricyclic tetrahydrocyclopenta[4,5]pyrrolo[2,3- b]pyridine via isocyanide-based multicomponent reaction. Beilstein J Org Chem 2024; 20:1436-1443. [PMID: 38952962 PMCID: PMC11216090 DOI: 10.3762/bjoc.20.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
An efficient protocol for the synthesis of polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine-3,4b,5,6,7(1H)-pentacarboxylates was developed by a three-component reaction. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates and 5,6-unsubstituted 1,4-dihydropyridines in refluxing acetonitrile afforded polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine-3,4b,5,6,7(1H)-pentacarboxylates in high yields and with high diastereoselectivity. The reaction was finished by in situ generation of activated 5-(alkylimino)cyclopenta-1,3-dienes from addition of alkyl isocyanide to two molecules of but-2-ynedioates and sequential formal [3 + 2] cycloaddition reaction with 5,6-unsubstituted 1,4-dihydropyridine.
Collapse
Affiliation(s)
- Xiu-Yu Chen
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| |
Collapse
|
6
|
Wu X, Liu L, Xiang C, Yu JT, Pan C. Photocatalytic cyclization of 3-(2-isocyanophenyl)quinazolin-4(3 H)-ones for the construction of quinoxalino[2,1- b]quinazolinones. Chem Commun (Camb) 2024; 60:2556-2559. [PMID: 38345179 DOI: 10.1039/d4cc00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A new kind of building unit, 3-(2-isocyanophenyl)quinazolin-4(3H)-ones, was designed and synthesized for the construction of novel quinoxalino[2,1-b]quinazolinones. The radical cyclization of 3-(2-isocyanophenyl)quinazolin-4(3H)-ones with ethers afforded ether-substituted tetracyclic quinoxalino[2,1-b]quinazolinones under photocatalytic and metal-free conditions. In the process, the isocyano accepts a carbon radical to give an imidoyl radical, which adds to the electron-deficient CN bond in quinazolin-4(3H)-one.
Collapse
Affiliation(s)
- Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
7
|
Nazeri MT, Nasiriani T, Torabi S, Shaabani A. Isocyanide-based multicomponent reactions for the synthesis of benzopyran derivatives with biological scaffolds. Org Biomol Chem 2024; 22:1102-1134. [PMID: 38251960 DOI: 10.1039/d3ob01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Benzopyrans (BZPs) are among the most privileged and influential small O-heterocycles that form the core of many natural compounds, commercial drugs, biological compositions, agrochemicals, and functional materials. BZPs are divided into six general categories including coumarins, chromans, 2H-chromenes, 4H-chromenes, chromones, and 4-chromanones, each of which is abundant in many plants and foods. These oxygenated heterocyclic compounds are fascinating motifs and have extensive applications in biology and materials science. Hence, numerous efforts have been made to develop innovative approaches for their extraction and synthesis. However, most of them are step-by-step or multi-step strategies that suffer from waste material generation and a tedious extraction process. Isocyanide-based multicomponent reactions (I-MCRs) offer a highly efficient method for overcoming these problems. The I-MCR is a simple and environmentally friendly one-pot domino procedure that does not require intermediate isolation or workup and is generally more efficient in material usage. This review covers all research articles related to I-MCRs for synthesizing BZP derivatives from the beginning to the middle of the year 2023. This strategy will be useful for organic and pharmaceutical chemists to design new drugs and optimize the synthesis steps of biological compounds and commercial drugs with benzopyran cores.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Tahereh Nasiriani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Saeed Torabi
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
- Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
8
|
Shan Y, Zhang X, Liu G, Li J, Liu Y, Wang J, Chen D. Cyanation with isocyanides: recent advances and perspectives. Chem Commun (Camb) 2024; 60:1546-1562. [PMID: 38240334 DOI: 10.1039/d3cc05880h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.
Collapse
Affiliation(s)
- Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jia Wang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
9
|
Yavari I, Sheikhi S, Taheri Z. Isocyanide-based synthesis of spirorhodanine-cyclopentadiene and spirorhodanine-iminobutenolide conjugates from Winterfeldt's zwitterions and 5-ylidene rhodanines. Mol Divers 2024; 28:143-157. [PMID: 37099072 DOI: 10.1007/s11030-023-10635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/27/2023]
Abstract
An ultrasonic-assisted isocyanide-based protocol to access a series of functionalized spirorhodanine-cyclopentadiene and spirorhodanine-iminobutenolide conjugates from alkyl isocyanides and dialkyl acetylenedicarboxylates in the presence of 5-ylidene rhodanines in MeCN, is described. The reaction proceeds via interception of the reactive Winterfeldt's zwitterions by 5-ylidene rhodanine derivatives. The structures of the target compounds were confirmed by X-ray diffraction studies.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Sara Sheikhi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Zohreh Taheri
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
10
|
Morja MI, Moradiya RB, Chikhalia KH. First-row transition metal for isocyanide-involving multicomponent reactions (IMCR). Mol Divers 2023; 27:2895-2934. [PMID: 36538208 DOI: 10.1007/s11030-022-10583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
First-row transition metal catalyzed transformations that are able to construct complex molecules from simple, readily obtainable feedstocks have become a keystone of modern synthetic organic chemistry. Particularly, the multicomponent reaction (MCR) involving carbon-carbon (C-C) as well as carbon-heteroatom (C-X) bond formation plays an essential role in many chemical conversions, and insurgencies in these reactions powerfully improve the overall synthetic efficiency. Recently, MCRs emerges rapidly because of its greener sides like eco-friendly nature, swift and straightforward execution, high atom/step economy, and construction of aimed product with lowest or no by-product, usually in quantitative yield. Curiously, the exceptional divalent carbon atoms of isocyanides make them predominantly useful components in multicomponent reactions. As a result of widespread research over the past few decades, numerous well-designed and effective procedures for the first-row TM-catalyzed MCR to afford the various entities have been reported. These aspects are summarized in this review article. A particular focus on comparative discussion of various first-row transition-metal catalyzed isocyanide-based multicomponent reactions through mechanistic details included in the review article.
Collapse
Affiliation(s)
- Mayur I Morja
- Department of Chemistry, Government Science College, Vankal, Surat, Gujarat, 394430, India
| | - Riddhi B Moradiya
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, Gujarat, 395007, India
| | - Kishor H Chikhalia
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, Gujarat, 395007, India.
| |
Collapse
|
11
|
Guo H, Zhou B, Chang J, Chang W, Feng J, Zhang Z. Multicomponent cyclization with azides to synthesize N-heterocycles. Org Biomol Chem 2023; 21:8054-8074. [PMID: 37801029 DOI: 10.1039/d3ob01115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Heterocyclic compounds, both naturally derived and synthetically produced, constitute a wide variety of biologically active and industrially important compounds. The synthesis and application of heterocyclic compounds have garnered significant attention and experienced rapid growth in recent decades. Organic azides, due to their unique properties and distinctive reactivity, have become a convenient chemical tool for achieving a wide range of heterocycles such as triazoles and tetrazoles. Importantly, the field of multicomponent reaction (MCR) chemistry provides a convergent approach to access various N-heterocyclic scaffolds, offering novelty, diversity, and complexity. However, the exploration of MCR pathways to N-heterocyclic compounds remains incomplete. Here, we review the use of multicomponent reactions for the preparation of N-heterocycles. A wide range of reactions based on azides for the synthesis of various types of N-heterocyclic systems have been developed.
Collapse
Affiliation(s)
- Hong Guo
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Bei Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jingjing Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Wenxu Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jiyao Feng
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhenhua Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Haghipour S, Mehrdad M, Hosseini S, Moazzam A, Rad-Moghadam K, Mahdavi M. Ethyl 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate in the smiles rearrangement reaction: straightforward synthesis of amino acid derived quinolin-2(1H)-one enamines. Mol Divers 2023; 27:2345-2352. [PMID: 36752999 DOI: 10.1007/s11030-022-10560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/29/2022] [Indexed: 02/09/2023]
Abstract
This paper describes the development of 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate compound as a heterocyclic enols containing a Michael acceptor so that it participates in an Ugi-type multicomponent condensation through a Smiles rearrangement in replacement of acid components. The new four-component containing 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate, aldehyde derivatives, amine derivatives and isocyanides process leads readily and efficiently to heterocyclic enamines. This report is an outstanding strategy for the preparation of new biologically structures containing peptidic or pseudo-peptidic with quinolin-2(1H)-one scaffolds.
Collapse
Affiliation(s)
- Sirous Haghipour
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Morteza Mehrdad
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | | | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ogawa A, Yamamoto Y. Multicomponent Reactions between Heteroatom Compounds and Unsaturated Compounds in Radical Reactions. Molecules 2023; 28:6356. [PMID: 37687185 PMCID: PMC10488953 DOI: 10.3390/molecules28176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this mini-review, we present our concepts for designing multicomponent reactions with reference to a series of sequential radical reactions that we have developed. Radical reactions are well suited for the design of multicomponent reactions due to their high functional group tolerance and low solvent sensitivity. We have focused on the photolysis of interelement compounds with a heteroatom-heteroatom single bond, which readily generates heteroatom-centered radicals, and have studied the photoinduced radical addition of interelement compounds to unsaturated compounds. First, the background of multicomponent radical reactions is described, and basic concepts and methodology for the construction of multicomponent reactions are explained. Next, examples of multicomponent reactions involving two interelement compounds and one unsaturated compound are presented, as well as examples of multicomponent reactions involving one interelement compound and two unsaturated compounds. Furthermore, multicomponent reactions involving intramolecular cyclization processes are described.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan;
| |
Collapse
|
14
|
Chaudhari TY, Bisht S, Chorol S, Bhujbal SM, Bharatam PV, Tandon V. Bronsted Acid-Catalyzed Regioselective Carboxamidation of 2-Indolylmethanols with Isonitriles. J Org Chem 2023. [PMID: 37440673 DOI: 10.1021/acs.joc.2c02816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
A regioselective direct carboxamidation reaction of 2-indolylmethanols with readily available isocyanoesters/isocyanides has been reported in this work. The reaction was catalyzed by Bronsted acid such as p-TsOH to deliver the benzylic regioselective amides in 67-86% yield under mild conditions. The developed methodology provides alternative access to traditional metal-free carboxamidation via C-C and C-O bond formation with high atom economy. Furthermore, the developed approach was diversified to synthesize chiral indole-2-carboxamide derivatives with a moderate enantiomeric excess (61-73% ee) using an (R)-chiral phosphoric acid.
Collapse
Affiliation(s)
| | - Somya Bisht
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonam Chorol
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shivkanya Madhavrao Bhujbal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160062, Punjab, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
15
|
Sundaresan R, Dubey SK, Kataria R, Nandi GC. Ni-Catalyzed Mild Synthesis of Sulfonylurea via Tandem Coupling of Sulfonyl Azide, Isocyanide, and Water. J Org Chem 2023. [PMID: 37163612 DOI: 10.1021/acs.joc.3c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An efficient, mild, and novel route is developed to synthesize sulfonylurea via the nickel-catalyzed tandem coupling of sulfonyl azide, isocyanide, and water in aqueous media. The sulfonyl azide is expected to act as a nitrene precursor, which upon reaction with isocyanide generates carbodiimide. Herein, water acts as a nucleophile and reacts with carbodiimide to deliver the product. The protocol uses an inexpensive nickel catalyst, environmentally friendly water (as the nucleophile), and room temperature and provides products in moderate to good yields.
Collapse
Affiliation(s)
- Ravindra Sundaresan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tiruchirappalli, Tamilnadu-620015, India
| | - Shivam Kumar Dubey
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tiruchirappalli, Tamilnadu-620015, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tiruchirappalli, Tamilnadu-620015, India
| |
Collapse
|
16
|
Graziano G, Stefanachi A, Contino M, Prieto-Díaz R, Ligresti A, Kumar P, Scilimati A, Sotelo E, Leonetti F. Multicomponent Reaction-Assisted Drug Discovery: A Time- and Cost-Effective Green Approach Speeding Up Identification and Optimization of Anticancer Drugs. Int J Mol Sci 2023; 24:6581. [PMID: 37047554 PMCID: PMC10095429 DOI: 10.3390/ijms24076581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Multicomponent reactions (MCRs) have emerged as a powerful strategy in synthetic organic chemistry due to their widespread applications in drug discovery and development. MCRs are flexible transformations in which three or more substrates react to form structurally complex products with high atomic efficiency. They are being increasingly appreciated as a highly exploratory and evolutionary tool by the medicinal chemistry community, opening the door to more sustainable, cost-effective and rapid synthesis of biologically active molecules. In recent years, MCR-based synthetic strategies have found extensive application in the field of drug discovery, and several anticancer drugs have been synthesized through MCRs. In this review, we present an overview of representative and recent literature examples documenting different approaches and applications of MCRs in the development of new anticancer drugs.
Collapse
Affiliation(s)
- Giovanni Graziano
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angela Stefanachi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Marialessandra Contino
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Antonio Scilimati
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francesco Leonetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| |
Collapse
|
17
|
Salami SA, Smith VJ, Krause RWM. Water‐Assisted Passerini Reactions under Mechanochemical Activation: A Simple and Straightforward Access to Oxindole Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Vincent J. Smith
- Department of Chemistry Rhodes University Grahamstown, Makhanda 6139 South Africa
| | - Rui W. M. Krause
- Department of Chemistry Rhodes University Grahamstown, Makhanda 6139 South Africa
| |
Collapse
|
18
|
Lei J, Yang D, Xu J, Li J, Zhang G, Xiong X, Zhou C, Xu Z, Chen Z. Ugi Cascade Sequence for the Construction of 3‐Pyrrolin‐2‐one Scaffolds: Anti‐proliferation in Prostate Cancer Cells. Chem Asian J 2022; 17:e202200977. [DOI: 10.1002/asia.202200977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Jie Lei
- College of Pharmacy National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI Chongqing University of Arts and Sciences 319 Honghe Ave., Yongchuan 402160 Chongqing P. R. China
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University 2 Tiansheng Ave., Beibei 400715 Chongqing P. R. China
| | - Dong‐Lin Yang
- College of Pharmacy National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI Chongqing University of Arts and Sciences 319 Honghe Ave., Yongchuan 402160 Chongqing P. R. China
| | - Jia Xu
- College of Pharmacy National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI Chongqing University of Arts and Sciences 319 Honghe Ave., Yongchuan 402160 Chongqing P. R. China
| | - Jie Li
- College of Pharmacy National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI Chongqing University of Arts and Sciences 319 Honghe Ave., Yongchuan 402160 Chongqing P. R. China
| | - Geng‐Yuan Zhang
- College of Pharmacy National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI Chongqing University of Arts and Sciences 319 Honghe Ave., Yongchuan 402160 Chongqing P. R. China
| | - Xu Xiong
- College of Pharmacy National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI Chongqing University of Arts and Sciences 319 Honghe Ave., Yongchuan 402160 Chongqing P. R. China
| | - Chen‐He Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University 2 Tiansheng Ave., Beibei 400715 Chongqing P. R. China
| | - Zhi‐Gang Xu
- College of Pharmacy National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI Chongqing University of Arts and Sciences 319 Honghe Ave., Yongchuan 402160 Chongqing P. R. China
| | - Zhong‐Zhu Chen
- College of Pharmacy National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics IATTI Chongqing University of Arts and Sciences 319 Honghe Ave., Yongchuan 402160 Chongqing P. R. China
| |
Collapse
|
19
|
Adhikari A, Bhakta S, Ghosh T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Shirsath SR, More DA, Muthukrishnan M. Metal‐Free Aminocarbonylation of p‐Quinone Methides with Isocyanides: Synthesis of Sterically Hindered α‐Arylated Acetamides. Chem Asian J 2022; 17:e202200642. [DOI: 10.1002/asia.202200642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Sachin R Shirsath
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Division of Organic Chemistry INDIA
| | - Devidas A More
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Division of Organic Chemistry INDIA
| | - M Muthukrishnan
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Organic Chemistry Dr. HomiBhabha Road 411008 Pune INDIA
| |
Collapse
|
21
|
|
22
|
Origin of enantioselectivity and product-distribution control in isocyanide-based multicomponent reaction catalysed by chiral N, N'-dioxide-Mg(II) complex. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Ali E, Naimi-Jamal MR, Rashid Z, Ghahremanzadeh R. A Novel and Efficient Isocyanide-Catalyzed Addition Reaction of Enaminones to Isatin Derivatives for Oxindoles Synthesis. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1768566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Elham Ali
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Zahra Rashid
- Department of Nano biotechnology, Avicenna Research Institute, Tehran, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
24
|
Zha J, Wang Z, Liu B, Tan Q, Xu B. Multicomponent Reaction of Isocyanide, Ditelluride, and Mn(III) Carboxylate: Synthesis of N-Acyl Tellurocarbamate. Org Lett 2022; 24:2863-2867. [PMID: 35420436 DOI: 10.1021/acs.orglett.2c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multicomponent reaction of isocyanides, ditellurides and manganese(III) carboxylates under mild reaction conditions leads to the synthesis of various N-acyl tellurocarbamates. This method demonstrates good functional tolerance and broad substrate scope and, as a result, is especially suitable for the postfunctionalization of complicated molecules such as drugs. The given method can be further extended to the synthesis of selenocarbamates.
Collapse
Affiliation(s)
- Jianjian Zha
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Zhuoer Wang
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
25
|
Wang XJ, Li GW, Cheng YP, Sun QL, Hao YQ, Wang CH, Liu LT. Design and Synthesis of Dipeptidomimetic Isocyanonaphthalene as Enhanced-Fluorescent Chemodosimeter for Sensing Mercury Ion and Living Cells. Front Chem 2022; 10:813108. [PMID: 35317003 PMCID: PMC8934403 DOI: 10.3389/fchem.2022.813108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
A novel valine-based isocyanonaphthalene (NpI) was designed and synthesized by using an easy method and enabled the selective fluorescence detection of Hg2+. The chemodosimeter can display an immediate turn-on fluorescence response (500-fold) towards target metal ions upon the Hg2+-mediated conversion of isocyano to amino within NpI. Based on this specific reaction, the fluorescence-enhancement probe revealed a high sensitivity toward Hg2+ over other common metal ions and exhibited excellent aqueous solubility, good antijamming capability, high sensitivity (detection limit: 14.2 nM), and real-time detection. The response mechanism of NpI was supported by NMR spectroscopy, MS analysis and DFT theoretical calculation using various techniques. Moreover, a dipeptidomimetic NpI probe was successfully applied to visualize intracellular Hg2+ in living cells and monitor Hg2+ in real water samples with good recoveries and small relative standard deviations.
Collapse
Affiliation(s)
| | - Gao-Wei Li
- College of Chemistry and Chemical Engineering, Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, and Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, China
| | | | | | - Yuan-Qiang Hao
- College of Chemistry and Chemical Engineering, Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, and Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, China
| | | | | |
Collapse
|
26
|
Zhang F, Sang X, Zhou Y, Cao W, Feng X. Enantioselective Synthesis of Azetidines through [3 + 1]-Cycloaddition of Donor-Acceptor Aziridines with Isocyanides. Org Lett 2022; 24:1513-1517. [PMID: 35147442 DOI: 10.1021/acs.orglett.2c00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enantioselective [3 + 1]-cycloaddition of racemic donor-acceptor (D-A) aziridines with isocyanides was first realized under mild reaction conditions using a chiral N,N'-dioxide/MgII complex as catalyst, providing a facile route to enantioenriched exo-imido azetidines with good to excellent yield (up to 99%) and enantioselectivity (up to 94% ee). An obvious chiral amplification effect was observed in this system, and an explanation was elucidated based on the experimental investigation and X-ray crystal structure of the enantiomerically pure catalyst.
Collapse
Affiliation(s)
- Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xinpeng Sang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
27
|
Heravi MM, Malakooti R, Kafshdarzadeh K, Amiri Z, Zadsirjan V, Atashin H. Supported palladium oxide nanoparticles in Al-SBA-15 as an efficient and reusable catalyst for the synthesis of pyranopyrazole and benzylpyrazolyl coumarin derivatives via multicomponent reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Dong P, Li Z, Liu X, Dong S, Feng X. Asymmetric synthesis of polycyclic spiroindolines via the Dy-catalyzed cascade reaction of 3-(2-isocyanoethyl)indoles with aziridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric cascade reaction catalyzed by a chiral N,N′-dioxide–Dy(iii) complex was realized to construct the valuable [6,5,5,6] tetracyclic spiroindolines with good yields and enantioselectivities by a concise and one-step protocol.
Collapse
Affiliation(s)
- Pei Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhaojing Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
29
|
Qu C, Huang R, Li Y, Liu T, Chen Y, Song G. Selective sulfonylation and isonitrilation of para-quinone methides employing TosMIC as a source of sulfonyl group or isonitrile group. Beilstein J Org Chem 2021; 17:2822-2831. [PMID: 34925621 PMCID: PMC8649203 DOI: 10.3762/bjoc.17.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 11/23/2022] Open
Abstract
Chemoselective sulfonylation and isonitrilation reactions for the divergent synthesis of valuable diarylmethyl sulfones and isonitrile diarylmethanes starting from easy-to-synthesize para-quinone methides (p-QMs) and commercially abundant p-toluenesulfonylmethyl isocyanide (TosMIC) by using respectively zinc iodide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as catalysts were developed. The distinguishing feature of this method is that TosMIC plays a dual role from the same substrates in the reaction: as a sulfonyl source or as an isonitrile source. The synthetic utility of this protocol was also demonstrated in the synthesis of difluoroalkylated diarylmethane 5 and diarylmethane ketone derivatives 6 and 7, which are important core structures in natural products and medicines.
Collapse
Affiliation(s)
- Chuanhua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Run Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Guiting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
30
|
Zhang MM, Zhan ZZ, Wang M, Wang HS, Huang GS. Direct Synthesis of 2,4,6‐Trisubstituted Pyrimidines
via
Base‐Mediated One‐Pot Multicomponent Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming M. Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Zhen Z. Zhan
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Meng Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - He S. Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Guo S. Huang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| |
Collapse
|
31
|
Post-condensational modifications of the Groebke‐Blackburn‐Bienaymé reaction products for scaffold-oriented synthesis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Li Y, Emge TJ, Moreno-Vicente A, Kopcha WP, Sun Y, Mansoor IF, Lipke MC, Hall GS, Poblet JM, Rodríguez-Fortea A, Zhang J. Unexpected Formation of Metallofulleroids from Multicomponent Reactions, with Crystallographic and Computational Studies of the Cluster Motion. Angew Chem Int Ed Engl 2021; 60:25269-25273. [PMID: 34559455 DOI: 10.1002/anie.202110881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Indexed: 11/09/2022]
Abstract
New multicomponent reactions involving an isocyanide, terminal or internal alkynes, and endohedral metallofullerene (EMF) Lu3 N@C80 yield metallofulleroids which are characterized by mass-spectrometry, HPLC, and multiple 1D and 2D NMR techniques. Single crystal studies revealed one ketenimine metallofulleroid has ordered Lu3 N cluster which is unusual for EMF monoadducts. Computational analysis, based on crystallographic data, confirm that the endohedral cluster motion is controlled by the position of the exohedral organic appendants. Our findings provide a new functionalization reaction for EMFs, and a potential facile approach to freeze the endohedral cluster motion at relatively high temperatures.
Collapse
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Antonio Moreno-Vicente
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Gene S Hall
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| |
Collapse
|
33
|
Li Y, Emge TJ, Moreno‐Vicente A, Kopcha WP, Sun Y, Mansoor IF, Lipke MC, Hall GS, Poblet JM, Rodríguez‐Fortea A, Zhang J. Unexpected Formation of Metallofulleroids from Multicomponent Reactions, with Crystallographic and Computational Studies of the Cluster Motion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Antonio Moreno‐Vicente
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - William P. Kopcha
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Yue Sun
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Iram F. Mansoor
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Mark C. Lipke
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Gene S. Hall
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Josep M. Poblet
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - Antonio Rodríguez‐Fortea
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| |
Collapse
|
34
|
Li Y, Kopcha WP, Emge TJ, Sun Y, Zhang J. Isocyanide-Induced Annulation Leading to Cyclopento-, Methano-, and Cyclopentano-[60]Fullerene Derivatives. Org Lett 2021; 23:8867-8872. [PMID: 34739256 DOI: 10.1021/acs.orglett.1c03371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-component annulation reactions of C60, alkyl isocyanide, and dimethyl acetylenedicarboxylate (DMAD) or unsymmetric alkynes are investigated to afford cyclopent-2-en-1-imino- and ketenimine methano-[60]fullerene derivatives, which, upon hydration in the presence of acid, yield the corresponding fullerene amides. Dimethyl 2,3-pentadienedioate, the allene counterpart of DMAD, and ethyl buta-2,3-dienoate undergo four-component annulation with C60, alkyl isocyanide, and water under similar conditions to yield cyclopentano-[60]fullerene derivatives with similar amide groups.
Collapse
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
35
|
Borah B, Chowhan LR. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv 2021; 11:37325-37353. [PMID: 35496411 PMCID: PMC9043781 DOI: 10.1039/d1ra06942j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023] Open
Abstract
Quinoxalines, also known as benzo[a]pyrazines, constitute an important class of nitrogen-containing heterocyclic compounds as a result of their widespread prevalence in natural products, biologically active synthetic drug candidates, and optoelectronic materials. Owing to their importance and chemists' ever-increasing imagination of new transformations of these products, tremendous efforts have been dedicated to finding more efficient approaches toward the synthesis of quinoxaline rings. The last decades have witnessed a marvellous outburst in modifying organic synthetic methods to create them sustainable for the betterment of our environment. The exploitation of transition-metal-free catalysis in organic synthesis leads to a new frontier to access biologically active heterocycles and provides an alternative method from the perspective of green and sustainable chemistry. Despite notable developments achieved in transition-metal catalyzed synthesis, the high cost involved in the preparation of the catalyst, toxicity, and difficulty in removing it from the final products constitute disadvantageous effects on the atom economy and eco-friendly nature of the transformation. In this review article, we have summarized the recent progress achieved in the synthesis of quinoxalines under transition-metal-free conditions and cover the reports from 2015 to date. This aspect is presented alongside the mechanistic rationalization and limitations of the reaction methodologies. The scopes of future developments are also highlighted.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
36
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
37
|
Bhat SI, Kigga M, Heravi MM. Multicomponent Reactions Based on In Situ Generated Isocyanides for the Construction of Heterocycles. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Matsuo BT, Oliveira PHR, Correia JTM, Paixão MW. Carbamoylation of Azomethine Imines via Visible-Light Photoredox Catalysis. Org Lett 2021; 23:6775-6779. [PMID: 34428073 DOI: 10.1021/acs.orglett.1c02353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A versatile and robust photocatalytic methodology to install the amide functional group into azomethine imine ions is described. This protocol is distinguished by its broad scope and mild reaction conditions, which are well suited for the preparation of structurally complex compounds in the form of amino acids, peptides, and small drug-like molecules. Moreover, the generated pyrazolidinone core could be easily converted into β-alanine analogues.
Collapse
Affiliation(s)
- Bianca T Matsuo
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Washington Luís Highway, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Pedro H R Oliveira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Washington Luís Highway, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - José Tiago M Correia
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Washington Luís Highway, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Márcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Washington Luís Highway, km 235, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
39
|
Pandya KM, Battula S, Naik PJ. Pd-catalyzed post-Ugi intramolecular cyclization to the synthesis of isoquinolone-pyrazole hybrid pharmacophores & discover their antimicrobial and DFT studies. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Xiong Q, Luo Q, Zhang T, Dong S, Liu X, Feng X. Catalytic asymmetric multicomponent reactions of isocyanide, isothiocyanate and alkylidene malonates. Chem Commun (Camb) 2021; 57:7288-7291. [PMID: 34212960 DOI: 10.1039/d1cc02939h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several unique chiral 3,4-dihydro-2H-pyrrole-2-thiones were made readily available by carrying out, in each case, a chiral-Mg(OTf)2/N,N'-dioxide-complex-promoted formal [2+1+2] cycloaddition in the presence of tetraethylenediamine. Control experiments revealed that in situ-generated ammonium thiocyanate was crucial for maintaining high enantioselectivity through its inhibition of the HNCS-induced racemization of the products.
Collapse
Affiliation(s)
- Qian Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry. Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | |
Collapse
|
41
|
Jiang M, Hu K, Zhou Y, Xiong Q, Cao W, Feng X. Enantioselective Isocyanide-based Multicomponent Reaction with Alkylidene Malonates and Phenols. Org Lett 2021; 23:5261-5265. [PMID: 34156867 DOI: 10.1021/acs.orglett.1c01792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly enantioselective isocyanide-based multicomponent reaction catalyzed by a chiral N,N'-dioxide/MgII complex was reported. A wide range of substrates were tolerated in this reaction, including alkyl- and aryl-substituted isocyanides with alkylidene malonates and various phenols, affording the corresponding phenoxyimidate products in good to excellent yields (up to 94% yield) with good to excellent enantioselectivities (up to 95.5:4.5 er). A catalytic cycle and transition state were proposed to rationalize the reaction process and enantiocontrol.
Collapse
Affiliation(s)
- Mingyi Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kaiqi Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qian Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
42
|
Pan N, Xinen Lee M, Bunel L, Grimaud L, Vitale MR. Electrochemical TEMPO-Catalyzed Oxidative Ugi-Type Reaction. ACS ORGANIC & INORGANIC AU 2021; 1:18-22. [PMID: 36855635 PMCID: PMC9954374 DOI: 10.1021/acsorginorgau.1c00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative isocyanide-based multicomponent reactions (oxidative IMCRs) are very useful tools for the rapid construction of molecular diversity starting from readily available and stable substrates. Despite all their benefits, such multicomponent reactions are underdeveloped and strictly limited to 3-component processes. Indeed, in the presence of several reaction partners, the oxidation event needs to be rigorously chemoselective, which becomes incredibly more intricate as the number of reactive components increases. Nonetheless, we could overcome this significant pitfall and reach the first oxidative Ugi-type 4-IMCR by capitalizing on a very mild and green TEMPO-catalyzed electro-oxidation process. Employing alcohols as aldehyde surrogates and in the notable absence of any supporting electrolyte, this transformation proved to be extremely chemoselective in the presence of an amine and was compatible with a wide range of alcohols, amines, isocyanides, and carboxylic acids.
Collapse
Affiliation(s)
- Na Pan
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France,Shanghai Engineering Research Center of Molecular Therapeutics and
New Drug Development, SCME, East China Normal
University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Maegan Xinen Lee
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Louis Bunel
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Laurence Grimaud
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France,
| | - Maxime R. Vitale
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France,
| |
Collapse
|
43
|
Three-Component Reactions of 3-Arylidene-3 H-Indolium Salts, Isocyanides and Amines. Molecules 2021; 26:molecules26092402. [PMID: 33919009 PMCID: PMC8122609 DOI: 10.3390/molecules26092402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
A multicomponent reaction of isocyanides with aryl(indol-3-yl)methylium salts and amines has been found. A series of aryl(indol-3-yl)acetimidamides was obtained in up to 96% yields. In the case of ethyl isocyanoacetate, the reaction is followed by cyclization to form 3,5-dihydro-4H-imidazol-4-one derivatives.
Collapse
|
44
|
Salehi P, Tanbakouchian Z, Farajinia-Lehi N, Shiri M. Cascade synthesis of 2,4-disulfonylpyrroles by the sulfonylation/[2 + 3]-cycloaddition reactions of gem-dibromoalkenes with arylsulfonyl methyl isocyanides. RSC Adv 2021; 11:13292-13296. [PMID: 35423874 PMCID: PMC8697567 DOI: 10.1039/d0ra10451e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 10/11/2023] Open
Abstract
An efficient cascade reaction involving sulfonylation and [2 + 3]-cycloaddition reactions of gem-dibromoalkenes with arylsulfonyl methyl isocyanides was described for the synthesis of 3-aryl-2,4-disulfonyl-1H-pyrroles. The main highlight of this study is the introduction of a new dual-functional reactivity of arylsulfonyl methyl isocyanides as the sulfonyl source as well as a 1,3-dipolar reagent in the same reaction. This system is facilitated by Cs2CO3 mediation in DMSO and 100 °C conditions.
Collapse
Affiliation(s)
- Parvin Salehi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Zahra Tanbakouchian
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Noushin Farajinia-Lehi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Morteza Shiri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| |
Collapse
|
45
|
Smajlagic I, Carlson B, Dudding T. Brønsted Acid Organocatalyzed Three-Component Hydroamidation Reactions of Vinyl Ethers. J Org Chem 2021; 86:4171-4181. [PMID: 33626274 DOI: 10.1021/acs.joc.0c03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroamidation of carbon-carbon double bonds is an attractive strategy for installing nitrogen functionality into molecular scaffolds and, with it, increasing molecular complexity. To date, metal-based approaches have dominated this area of chemical synthesis, despite the drawbacks of air and moisture sensitivity, limited functional group tolerance, toxicity, and/or high cost often associated with using metals. Here, in offering an alternative solution, we disclose an operationally simple, metal-free, one-pot, regioselective, multicomponent synthetic procedure for the hydroamidation of carbon-carbon double bonds. This method features mild reaction conditions and utilizes isocyanides and vinyl ethers for the rapid and modular synthesis of privileged α-oxygenated amide scaffolds. In unraveling the mechanistic underpinning of this non-metal-based reactivity, we present kinetic solvent isotope effect studies, variable time normalization analysis, and density functional theory computations offering insight into the mechanism of this multistep catalytic hydroamidation process.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Brenden Carlson
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
46
|
Dashteh M, Yarie M, Zolfigol MA, Khazaei A, Makhdoomi S. Novel pseudopolymeric magnetic nanoparticles as a hydrogen bond catalyst for the synthesis of tetrahydrodipyrazolopyridine derivatives under mild reaction conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mohammad Dashteh
- Department of Organic Chemistry, Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Sajjad Makhdoomi
- Department of Pharmacology and Toxicology, School of Pharmacy Hamedan University of Medicinal Science Hamedan Iran
| |
Collapse
|
47
|
Isocyanide-based MCRs: Diastereoselective cascade synthesis of perfluoroalkylated pyrano[3,4-c]pyrrole derivatives. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Srinivasulu C, Sagar NR, Vishwanatha TM, Durgamma S, Sureshbabu VV. Synthesis of N β-Protected Amino Sulfenyl Methyl Formamides and Sulfonyl Methyl Formamides: A Simple Protocol. ACS OMEGA 2021; 6:4680-4686. [PMID: 33644575 PMCID: PMC7905828 DOI: 10.1021/acsomega.0c05419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Chiral amino acid-derived formamides represent one of the most versatile components in multicomponent reactions. Herein, we describe a facile synthesis of Nβ-protected amino sulfenyl methyl formamides and sulfonyl methyl formamides via the Mannich reaction of Nα-protected amino alkyl thiols followed by oxidation using 3-chloroperbenzoic acid (m-CPBA). This protocol is applicable to a wide range of Fmoc- and Cbz-protected amino acids. Notably, the reaction provides high yield and retains the stereochemistry of the chiral center of the starting component.
Collapse
|
49
|
Mueller LG, Chao A, Alwedi E, Natrajan M, Fleming FF. Oxazole Synthesis by Sequential Asmic-Ester Condensations and Sulfanyl-Lithium Exchange-Trapping. Org Lett 2021; 23:1500-1503. [PMID: 33533625 DOI: 10.1021/acs.orglett.1c00288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxazoles are rapidly assembled through a sequential deprotonation-condensation of Asmic, anisylsulfanylmethylisocyanide, with esters followed by sulfanyl-lithium exchange-trapping. Deprotonating Asmic affords a metalated isocyanide that efficiently traps esters to afford oxazoles bearing a versatile C-4 anisylsulfanyl substituent. Interchange of the anisylsulfanyl substituent is readily achieved through a first-in-class sulfur-lithium exchange-electrophilic trapping sequence whose versatility is illustrated in the three-step synthesis of the bioactive natural product streptochlorin.
Collapse
Affiliation(s)
- Louis G Mueller
- Department of Chemistry, Drexel University, 32 South 32nd Street Philadelphia, Pennsylvania 19104, United States
| | - Allen Chao
- Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Embarek Alwedi
- Merck Inc., 90 East Scott Avenue, Rahway, New Jersey 07065, United States
| | - Maanasa Natrajan
- Department of Chemistry, Drexel University, 32 South 32nd Street Philadelphia, Pennsylvania 19104, United States
| | - Fraser F Fleming
- Department of Chemistry, Drexel University, 32 South 32nd Street Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Kumar B, Maity J, Shankar B, Kumar S, Kavita, Prasad AK. Synthesis of d-glycopyranosyl depsipeptides using Passerini reaction. Carbohydr Res 2021; 500:108236. [PMID: 33516073 DOI: 10.1016/j.carres.2021.108236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
A protocol based on Passerini multi-component reaction has been developed for facile, efficient and atom economical synthesis of a small library of twenty potential bioactive (2R)-2-(d-glycopyranosyl)-2-acyloxyacetamides using perbenzylated d-glycopyranosyl aldehydes, substituted isocyanides and different aliphatic/aromatic carboxylic acids. All twenty synthesized d-glycopyranosyl α-acyloxy amides, commonly known as depsipeptides were unambiguously identified on the basis of their spectral (IR, 1H, 13C NMR, COSY, HSQC, NOESY and HRMS) data analysis.
Collapse
Affiliation(s)
- Banty Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Rajdhani College, University of Delhi, Delhi, 110015, India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi, 110007, India
| | - Bhawani Shankar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Deshbandhu College, University of Delhi, Delhi, 110019, India
| | - Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Kavita
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|