1
|
Li C, Zhang K, Ishida M, Li Q, Shimomura K, Baryshnikov G, Li X, Savage M, Wu XY, Yang S, Furuta H, Xie Y. Tripyrrin-armed isosmaragdyrins: synthesis, heterodinuclear coordination, and protonation-triggered helical inversion. Chem Sci 2020; 11:2790-2795. [PMID: 34084339 PMCID: PMC8157612 DOI: 10.1039/c9sc06197e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative ring closure of linear oligopyrroles is one of the synthetic approaches to novel porphyrinoids with dinuclear coordination sites and helical chirality. The spatial arrangement of the pyrrolic groups of octapyrrole (P8) affected the position of the intramolecular oxidative coupling of the pyrrolic units; tripyrrin-armed isosmaragdyrin analogue (1) containing a β,β-linked bipyrrole moiety was synthesized regioselectively in a high yield by using FeCl3. NiII-coordination at the armed tripyrrin site of 1 allowed the formation of diastereomeric helical twisted complexes (2A and 2B) and succeeding CuII-coordination at the macrocyclic core afforded heterodinuclear NiII/CuII-complexes (3A and 3B). Each of them comprised a pair of separable enantiomers, exhibiting P- and M-helices, respectively. Notably, diastereomeric interconversion from 2A to 2B was quantitatively achieved as a consequence of helical transformation under acidic conditions.
Collapse
Affiliation(s)
- Chengjie Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Kai Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University Fukuoka 819-0395 Japan
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Keito Shimomura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University Fukuoka 819-0395 Japan
| | - Glib Baryshnikov
- School of Biotechnology, KTH Royal Institute of Technology SE-10691 Stockholm Sweden
| | - Xin Li
- School of Biotechnology, KTH Royal Institute of Technology SE-10691 Stockholm Sweden
| | - Mathew Savage
- School of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Sihai Yang
- School of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University Fukuoka 819-0395 Japan
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
2
|
Chatterjee S, Bhattacharjee P, Butterfoss GL, Achari A, Jaisankar P. Establishment of atropisomerism in 3-indolyl furanoids: a synthetic, experimental and theoretical perspective. RSC Adv 2019; 9:22384-22388. [PMID: 35519481 PMCID: PMC9066644 DOI: 10.1039/c9ra05350f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/21/2022] Open
Abstract
A number of axially chiral 3-indolyl furanoids have been synthesized and the individual enantiomers are found to be configurationally stable and isolable at room temperature.
Collapse
Affiliation(s)
- Sourav Chatterjee
- Laboratory of Catalysis and Chemical Biology
- Department of Organic and Medicinal Chemistry
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700 032
- India
| | - Pinaki Bhattacharjee
- Laboratory of Catalysis and Chemical Biology
- Department of Organic and Medicinal Chemistry
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700 032
- India
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology
- New York University Abu Dhabi
- Abu Dhabi-129188
- United Arab Emirates
| | - Anushree Achari
- Laboratory of Catalysis and Chemical Biology
- Department of Organic and Medicinal Chemistry
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700 032
- India
| | - Parasuraman Jaisankar
- Laboratory of Catalysis and Chemical Biology
- Department of Organic and Medicinal Chemistry
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700 032
- India
| |
Collapse
|