1
|
Sumam P, Kumar P R A, Parameswaran R. Aligned Fibroporous Matrix Generated from a Silver Ion and Graphene Oxide-Incorporated Ethylene Vinyl Alcohol Copolymer as a Potential Biomaterial for Peripheral Nerve Repair. ACS APPLIED BIO MATERIALS 2024; 7:6617-6630. [PMID: 39295150 DOI: 10.1021/acsabm.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Developing an ideal nerve conduit for proper nerve regeneration still faces several challenges. The attempts to fabricate aligned substrates for neuronal growth have enhanced the hope of successful nerve regeneration. In this wok, we have attempted to generate an electrospun matrix with aligned fibers from a silver and graphene oxide-incorporated ethylene vinyl alcohol copolymer (EVAL). The presence of silver was analyzed using UV-visible spectra, XPS spectra, and ICP. Raman spectra and FTIR spectra confirmed the presence of GO. The complexation of Ag+ with - OH of EVAL enabled the generation of aligned fibers. The fiber diameter (>1 μm) provided sufficient space for forming focal adhesion by the neurites and filopodia of N2a and C6 cells, respectively. The fiber diameter enabled the neurites and filopodia of the cells to align on the fibers. The incorporation of GO has contributed to the cell-material interactions. The morphological and mechanical properties of fibers obtained in the study ensure that the EVAL-Ag-GO-0.01 matrix is a potential substrate for developing a nerve guidance conduit/nerve wrap (NGC/W).
Collapse
Affiliation(s)
- Prima Sumam
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| | - Anil Kumar P R
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| |
Collapse
|
2
|
Sau S, Kundu S. Fabrication of highly stretchable salt and solvent blended PEDOT:PSS/PVA free-standing films: non-linear to linear electrical conduction response. RSC Adv 2024; 14:5193-5206. [PMID: 38332796 PMCID: PMC10851924 DOI: 10.1039/d3ra08260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Nowadays, ductile and conducting polymeric materials are highly utilizable in the realm of stretchable organic electronics. Here, mechanically ductile and electrically conducting free-standing films are fabricated by blending different solvents such as dimethyl sulfoxide (DMSO), diethylene glycol (DEG) and N,N-dimethylformamide (DMF), and salts such as silver nitrate (AgNO3), zinc chloride (ZnCl2), copper chloride (CuCl2) and indium chloride (InCl3) with the homogeneous solution of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA) through solution casting method. The presence of salt modifies the PEDOT conformation from benzoid to quinoid, and induces the evolution of different morphologies. ZnCl2 or AgNO3 blended films have lower surface roughness and good miscibility with polymers, while CuCl2 or InCl3 blended films have relatively higher surface roughness as well as irregularly distributed surface morphology. Some crystalline domains are also formed due to the salt agglomeration. The presence of salt inside PEDOT:PSS/PVA/solvent system changes the current-voltage response from non-linear to linear. Among all the films, zinc salt blended PEDOT:PSS/PVA/DMSO, PEDOT:PSS/PVA/DEG and PEDOT:PSS/PVA/DMF films have higher conductivity, and zinc salt blended PEDOT:PSS/PVA/DEG film shows the highest conductivity of 0.041 ± 0.0014 S cm-1, while silver salt blended PEDOT:PSS/PVA/DMSO, PEDOT:PSS/PVA/DEG and PEDOT:PSS/PVA/DMF films have higher elongation at break, and silver salt blended PEDOT:PSS/PVA/DMSO film shows the highest elongation at break of 670 ± 31%. Both the charge carriers, i.e., electrons and ions, contribute to the electrical conduction, and the presence of hydrogen bonds and ionic interactions among PEDOT+, PSS-, PVA, residual solvent, salt cations and anions modifies the film behaviours. Among all the films, ZnCl2 blended PEDOT:PSS/PVA/DMSO film offers relatively superior behaviours having higher conductivity (0.025 ± 0.0013 S cm-1) and elongation at break (517 ± 15%), and therefore can have potential applications in the fields of wearable devices, bioelectronics, etc.
Collapse
Affiliation(s)
- Sanjib Sau
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
3
|
Vinceković M, Jurić S, Vlahoviček-Kahlina K, Martinko K, Šegota S, Marijan M, Krčelić A, Svečnjak L, Majdak M, Nemet I, Rončević S, Rezić I. Novel Zinc/Silver Ions-Loaded Alginate/Chitosan Microparticles Antifungal Activity against Botrytis cinerea. Polymers (Basel) 2023; 15:4359. [PMID: 38006083 PMCID: PMC10674643 DOI: 10.3390/polym15224359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Addressing the growing need for environmentally friendly fungicides in agriculture, this study explored the potential of biopolymer microparticles loaded with metal ions as a novel approach to combat fungal pathogens. Novel alginate microspheres and chitosan/alginate microcapsules loaded with zinc or with zinc and silver ions were prepared and characterized (microparticle size, morphology, topography, encapsulation efficiency, loading capacity, and swelling behavior). Investigation of molecular interactions in microparticles using FTIR-ATR spectroscopy exhibited complex interactions between all constituents. Fitting to the simple Korsmeyer-Peppas empirical model revealed the rate-controlling mechanism of metal ions release from microparticles is Fickian diffusion. Lower values of the release constant k imply a slower release rate of Zn2+ or Ag+ ions from microcapsules compared to that of microspheres. The antimicrobial potential of the new formulations against the fungus Botrytis cinerea was evaluated. When subjected to tests against the fungus, microspheres exhibited superior antifungal activity especially those loaded with both zinc and silver ions, reducing fungal growth up to 98.9% and altering the hyphal structures. Due to the slower release of metal ions, the microcapsule formulations seem suitable for plant protection throughout the growing season. The results showed the potential of these novel microparticles as powerful fungicides in agriculture.
Collapse
Affiliation(s)
- Marko Vinceković
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (S.J.); (K.V.-K.); (A.K.)
| | - Slaven Jurić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (S.J.); (K.V.-K.); (A.K.)
| | - Kristina Vlahoviček-Kahlina
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (S.J.); (K.V.-K.); (A.K.)
| | - Katarina Martinko
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia;
| | - Suzana Šegota
- Laboratory for Biocolloids and Surface Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Marijan Marijan
- Department of Quality Control, The Institute of Immunology, Rockefellerova 2, 10000 Zagreb, Croatia;
| | - Ana Krčelić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (S.J.); (K.V.-K.); (A.K.)
| | - Lidija Svečnjak
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia;
| | - Mislav Majdak
- Department of Applied Chemistry, University of Textile Technology, Prilaz Baruna Filipovića 28a, 10000 Zagreb, Croatia;
| | - Ivan Nemet
- Department of Analytical Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.N.); (S.R.)
| | - Sanda Rončević
- Department of Analytical Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.N.); (S.R.)
| | - Iva Rezić
- Department of Applied Chemistry, University of Textile Technology, Prilaz Baruna Filipovića 28a, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Sumam P, Parameswaran R. Neuronal cell response on aligned fibroporous electrospun mat generated from silver ion complexed ethylene vinyl alcohol copolymer. J Biomed Mater Res B Appl Biomater 2023; 111:782-794. [PMID: 36333924 DOI: 10.1002/jbm.b.35189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Generating electrospun mats with aligned fibers and obtaining neurite extension in the aligned fiber direction could provide hope for fabricating nerve guidance conduits or wraps through an easy method. The growing interest in generating electrospun mats with aligned fibers for tissue engineering is looking for simple methods to generate the same. Here, in this study, ethylene vinyl alcohol copolymer (EVAL) chains were complexed with silver ions (Ag+ ) to generate aligned fibers during the electrospinning process. The fibers thus produced were subjected to physico-chemical characterization and biological studies to ensure their properties and to examine whether suitable for neuronal cell attachment and neurite extension that may be useful in making nerve guidance conduits or wraps. The presence of silver ions and its complex formation with -OH of EVAL has been confirmed with EDX and XPS analysis respectively. The alignment of fibers was visualized from SEM analysis and confirmed using directionality analysis using Fiji-ImageJ software. Mechanical properties done with dumbbells punched out in longitudinal and transverse directions also substantiated the alignment of fibers. The results obtained from direct contact, MTT, and live/dead assay showed the cells are viable on the material. From the actin staining and immunostaining assays, it was evident that the PC12 cells could attach and extend their neurites in an aligned manner on the fibers. The maximum neurite extension was up to 200 μm in length. These properties of electrospun EVAL-Ag mat with aligned fibers indicated that it could be developed as a biocompatible nerve guidance conduit or wrap.
Collapse
Affiliation(s)
- Prima Sumam
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
5
|
Sau S, Kundu S. Variation in structure and properties of poly(vinyl alcohol) (PVA) film in the presence of silver nanoparticles grown under heat treatment. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Pham BTT, Duong THT, Nguyen TT, Van Nguyen D, Trinh CD, Bach LG. Development of polyvinyl (alcohol)/D-glucose/agar/silver nanoparticles nanocomposite film as potential food packaging material. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02761-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Versatile bifunctional building block for in situ synthesis of sub-20 nm silver nanoparticle and selective copper deposition. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Yuan B, Yang S, Wang M, Jiang X, Bai S. Preparation of Ag foam catalyst based on in-situ thermally induced redox reaction between polyvinyl alcohol and silver nitrate with supercritical CO2 foaming technology. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wang M, Yuan B, Bai S. Preparation of Ag/C fiber with nanostructure through in situ thermally induced redox reaction between PVA and AgNO
3
and its catalysis for 4‐nitrophenol reduction. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meng Wang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| | - Bin Yuan
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| | - Shibing Bai
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
10
|
Taheri Kal-Koshvandi A, Ahghari MR, Maleki A. Design and antibacterial activity assessment of “green” synthesized 1,4-disubstituted 1,2,3-triazoles via an Fe 3O 4/silicalite-1/PVA/Cu( i) nanocomposite catalyzed three component reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj01984d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of an Fe3O4/silicalite-1/PVA/Cu(i) bionanocomposite is presented, completely characterized and applied for the green synthesis of 1,4-disubstituted-1,2,3-triazoles.
Collapse
Affiliation(s)
- Afsaneh Taheri Kal-Koshvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| |
Collapse
|
11
|
Ghosh D, Dastidar DG, Banerjee D, Chatterjee S. pH-Triggered
in-situ
release of silver nanoparticle in hydrogel for topical applications. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Feczkó T, Merza G, Babos G, Varga B, Gyetvai E, Trif L, Kovács E, Tuba R. Preparation of cubic-shaped sorafenib-loaded nanocomposite using well-defined poly(vinyl alcohol alt-propenylene) copolymer. Int J Pharm 2019; 562:333-341. [PMID: 30867128 DOI: 10.1016/j.ijpharm.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 11/18/2022]
Abstract
Vinyl alcohol (VA) copolymers having fine tunable polarities are emerging materials in drug delivery applications. VA copolymers rendering well-defined molecular architecture (C/OH ratio = 2, 4, 5 and 8) were used as carriers for model drug compound, fluorescein, which exhibited significantly different release characteristics depending on the polarity of the polymers. Based on the preliminary drug release tests the well-defined VA copolymer having C/OH = 5 ratio, poly(vinyl alcohol alt-propenylene) copolymer (PVA-5) was selected for nanocomposite synthesis. Sorafenib anticancer drug was embedded into PVA-5 (C/OH = 5 ratio) nanoparticles by nanoprecipitation resulting in nanoparticles exhibiting unusual cubic shape. The sorafenib-loaded nanocomposites showed continuous release during a day and concentration-dependant cytotoxicity on HT-29 cancer cells. This might be interpreted by the sustained release of the drug.
Collapse
Affiliation(s)
- Tivadar Feczkó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1519 Budapest, P.O. Box 286, Hungary; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Egyetem utca 10, H-8200, Hungary
| | - Gabriella Merza
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1519 Budapest, P.O. Box 286, Hungary
| | - György Babos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1519 Budapest, P.O. Box 286, Hungary; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Egyetem utca 10, H-8200, Hungary
| | - Bernadett Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1519 Budapest, P.O. Box 286, Hungary; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Egyetem utca 10, H-8200, Hungary
| | - Eszter Gyetvai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1519 Budapest, P.O. Box 286, Hungary
| | - László Trif
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1519 Budapest, P.O. Box 286, Hungary
| | - Ervin Kovács
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1519 Budapest, P.O. Box 286, Hungary
| | - Robert Tuba
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1519 Budapest, P.O. Box 286, Hungary.
| |
Collapse
|
13
|
Wang Y, Yao L, Ren T, He J. Robust yet self-healing antifogging/antibacterial dual-functional composite films by a simple one-pot strategy. J Colloid Interface Sci 2019; 540:107-114. [DOI: 10.1016/j.jcis.2019.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 11/26/2022]
|
14
|
Shah A, Hussain I, Murtaza G. Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity. Int J Biol Macromol 2018; 116:520-529. [DOI: 10.1016/j.ijbiomac.2018.05.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
|
15
|
Liu Q, Chen N, Bai S, Li W. Effect of silver nitrate on the thermal processability of poly(vinyl alcohol) modified by water. RSC Adv 2018; 8:2804-2810. [PMID: 35541492 PMCID: PMC9077398 DOI: 10.1039/c7ra12941f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/07/2018] [Indexed: 11/23/2022] Open
Abstract
The thermal processing of poly(vinyl alcohol) (PVA) is a big challenge worldwide. In this article, silver nitrate (AgNO3), which can combine with the hydroxyl groups of PVA and water, was introduced to further improve the thermal processability of the poly(vinyl alcohol)/water system. The water states, thermal performance, and rheological properties of PVA modified by AgNO3 were investigated. The results showed that with the increasing of AgNO3 content, the content of bound water in system increased ascribing to the interaction among PVA, water and AgNO3, indicating that the bondage of PVA matrix on water enhanced, thus retarding the tempestuous evaporation of water in system during melt process and making more water remain in system to play the role of plasticizer. Meanwhile, that AgNO3 combined with the hydroxyl groups of PVA further weakened the self-hydrogen bonding of PVA, guaranteeing a lower melting point and higher decomposition temperature, and broadening the thermal processing window. The rheological properties of the modified PVA system showed that the torque and die pressure of the modified PVA system turned to stabilization during melt processing, testifying that the thermal processability of the PVA/water system was largely improved.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu 610065 China +86-28-85402465 +86-28-85405136
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu 610065 China +86-28-85402465 +86-28-85405136
| | - Shibing Bai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu 610065 China +86-28-85402465 +86-28-85405136
| | - Wenzhi Li
- State Key Laboratory of Special Functional Water Proof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd Beijing 100000 China
| |
Collapse
|