1
|
Zhu W, Cheng Y, Yan S, Chen X, Wang C, Lu X. A general cation-exchange strategy for constructing hierarchical TiO2/CuInS2/CuS hybrid nanofibers to boost their peroxidase-like activity toward sensitive detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Zhu W, Cheng Y, Wang C, Lu X. Fabrication of a Tubular CuO/NiO Biomimetic Nanozyme with Synergistically Promoted Peroxidase-like Performance for Isoniazid Sensing. Inorg Chem 2022; 61:16239-16247. [PMID: 36179151 DOI: 10.1021/acs.inorgchem.2c01896] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isoniazid is an antibiotic primarily used in clinical treatment of tuberculosis, but excessive usage can lead to serious consequences such as hepatotoxicity, neurotoxicity, and even coma and death. Therefore, it is critical to exploit a quick, facile, and acute way for isoniazid analysis. In this work, we have demonstrated an efficient electrospinning-carbonation-wet chemistry reaction-calcination process to fabricate CuO/NiO nanotubes (NTs) as a promising nanozyme for peroxidase (POD) mimicking. In virtue of the distinct tubular structure and synergy between CuO and NiO from the mechanisms of both electron transfer and hydroxyl radical generation, a remarkably improved catalytic activity is realized for the CuO/NiO NTs compared with bare CuO and NiO samples. According to the admirable POD-like property, a rapid colorimetric detection for isoniazid is accomplished with a detection limit of 0.4 μM (S/N = 3) and favorable selectivity. In addition, the sensing capability of isoniazid in a real sample is also investigated with satisfactory results. This work offers a novel tactic to fabricate high-performance nanozymes with efficient isoniazid sensing capabilities to address challenges in disease treatment efficacy and public safety monitoring.
Collapse
Affiliation(s)
- Wendong Zhu
- College of Chemistry, Jilin University Alan G. MacDiarmid Institute, 2699 Qianjin Street, Gaoxin District, Changchun 130012, P.R. China
| | - Ya Cheng
- College of Chemistry, Jilin University Alan G. MacDiarmid Institute, 2699 Qianjin Street, Gaoxin District, Changchun 130012, P.R. China
| | - Ce Wang
- College of Chemistry, Jilin University Alan G. MacDiarmid Institute, 2699 Qianjin Street, Gaoxin District, Changchun 130012, P.R. China
| | - Xiaofeng Lu
- College of Chemistry, Jilin University Alan G. MacDiarmid Institute, 2699 Qianjin Street, Gaoxin District, Changchun 130012, P.R. China
| |
Collapse
|
3
|
Shen Z, Han S, Xu J, Yin XB, Zhang M. Hierarchical microtubes constructed using Fe-doped MoS 2 nanosheets for biosensing applications. Dalton Trans 2022; 51:15403-15411. [PMID: 36155691 DOI: 10.1039/d2dt02309a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural design of multiple functional components could enhance the synergistic catalytic performance of MoS2-based composites in enzyme-like catalysis. Herein, one-dimensional (1D) Fe-MoS2 microtubes were designed to prepare tubular Fe-doped MoS2 composites with MoO3 microrods as self-sacrificing precursors. Remarkably, the results indicated that the generated ammonia released from the sulfidation process led to the dissolution of MoO3 cores and the generation of a tubular structure. The Fe-MoS2 composites integrated the synergistic effects of Fe-doped MoS2 nanosheets (NSs) and the 1D tubular structure. Thus, a higher catalytic activity was observed in peroxidase-like catalysis than in other components, such as MoO3@FeOOH, FeOOH and MoS2 NSs. The peroxidase-like mechanism originated from the generation of the ˙OH radical. The Fe-MoS2 microtube-based colorimetric assay was used to detect H2O2 with a detection limit (LOD) of 0.51 μM in a linear range from 1.25 to 50 μM. The colorimetric method was simple, selective, and sensitive for glutathione (GSH) detection in the range of 0.25-125 μM with a detection limit (LOD) of 0.12 μM. Thus, we provide a facile synthetic strategy for simultaneously integrating electronic modulation and structural design to develop an efficient MoS2-based functional catalyst.
Collapse
Affiliation(s)
- Zhiwen Shen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Suping Han
- Department of Pharmacy, Shandong Medical College, No. 5460 Erhuannanlu Road, Jinan 250002, China.
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
4
|
Zhou Q, Jin M, Wu W, Fu L, Yin C, Karimi-Maleh H. Graphene-Based Surface-Enhanced Raman Scattering (SERS) Sensing: Bibliometrics Based Analysis and Review. CHEMOSENSORS 2022; 10:317. [DOI: 10.3390/chemosensors10080317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has received increasing attention from researchers since it was first discovered on rough silver electrode surfaces in 1974 and has promising applications in life sciences, food safety, and environmental monitoring. The discovery of graphene has stirred considerable waves in the scientific community, attracting widespread attention in theoretical research and applications. Graphene exhibits the properties of a semi-metallic material and has also been found to have Raman enhancement effects such as in metals. At the same time, it quenches the fluorescence background and improves the ratio of a Raman signal to a fluorescence signal. However, graphene single-component substrates exhibit only limited SERS effects and are difficult to use for trace detection applications. The common SERS substrates based on noble metals such as Au and Ag can produce strong electromagnetic enhancement, which results in strong SERS signals from molecules adsorbed on the surface. However, these substrates are less stable and face the challenge of long-term use. The combination of noble metals and graphene to obtain composite structures was an effective solution to the problem of poor stability and sensitivity of SERS substrates. Therefore, graphene-based SERS has been a popular topic within the last decade. This review presents a statistically based analysis of graphene-based SERS using bibliometrics. Journal and category analysis were used to understand the historical progress of the topic. Geographical distribution was used to understand the contribution of different countries and institutions to the topic. In addition, this review describes the different directions under this topic based on keyword analysis and keyword co-occurrence. The studies on this topic do not show a significant divergence. The researchers’ attention has gradually shifted from investigating materials science and chemistry to practical sensing applications. At the end of the review, we summarize the main contents of this topic. In addition, several perspectives are presented based on bibliometric analysis.
Collapse
Affiliation(s)
- Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing 100853, China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital, Beijing 100853, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610056, China
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 94771-67335, Iran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
5
|
Mu M, Wen S, Hu S, Zhao B, Song W. Putting surface-enhanced Raman spectroscopy to work for nanozyme research: methods, materials and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Feng J, Chu C, Dang K, Yao T, Ma Z, Han H. Responsive-released strategy based on lead ions-dependent DNAzyme functionalized UIO-66-NH 2 for tumor marker. Anal Chim Acta 2021; 1187:339170. [PMID: 34753583 DOI: 10.1016/j.aca.2021.339170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
Signal labeling on electrode interface is an important step during the construction of immunosensor and most signal substances are directly affixed on the immunoprobe or substrate so that some problems such as flimsy labeling method and interference of insulating proteins on electrode surface have been existed to affect their readout. In order to solve above problems in electrochemical immunoassay, a lead ions-decodable autocephalous signal integrator based on UIO-66-NH2 was proposed for the detection of prostate specific antigen (PSA). Briefly, a lead ions-dependent DNAzyme functionalized UIO-66-NH2, in which methylene blue was encapsulated, was independently dispersed in solution phase to be closely associated with the lead sulfide labeled sandwich bioconjugates, and internal methylene blue molecules can be sustained released once a cationic exchange reaction was occurred between lead sulfide label and adscititious silver ions. Based on this designing, immunoassay for PSA was effectively connected with the dynamic behavior of methylene blue molecules through the cleavage of DNAzyme on MOFs surface and performed a wide linear range from 1 pg mL-1 to 10 ng mL-1 and a satisfactory detection limit with 0.34 pg mL-1. The proposed strategy was expected to offer more valuable information for the application of MOFs in early and accurate cancer diagnosis.
Collapse
Affiliation(s)
- Jiejie Feng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Changshun Chu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kun Dang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
7
|
Yu M, Zhang G, Li P, Lu H, Tang W, Yang X, Huang R, Yu F, Wu W, Xiao Y, Xing X. Acid-activated ROS generator with folic acid targeting for bacterial biofilm elimination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112225. [PMID: 34225870 DOI: 10.1016/j.msec.2021.112225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Many medical and chemical applications require the precise supply of antimicrobial components in a controlled manner at the location of mature biofilm deposits. This work reports a facile strategy to fabricate nanoscale metal-organic frameworks (NMOFs) coencapsulating the antibacterial ligand (lysine carbon dots, Lys-CDs) and targeted drug (folic acid, FA) in one pot to improve antibiofilm efficiency against established biofilms. The resulting products are characterized by transmission electron microscopy, field-emission scanning electron microscopy, powder x-ray diffraction, and ultraviolet-visible spectroscopy. The results show that Lys-CDs could coordinate with Zn2+ and the adding of FA inhibits the coordination of Lys-CDs with central ions of Zn. The Lys-CDs and FA are successfully exposed with the NMOFs disintegrating in the acid environment of bacterial metabolites. We are surprised to find a sharp increase of reactive oxygen species (ROS) inside the bacterial cells by FA functionalizing NMOFs, which undoubtedly enhance the antibacterial and antibiofilm activity. The as-synthesized ZIF-8-based nanocomposites also show the peroxidase-like activity in an acid environment, and produce extremely active hydroxyl radicals resulting in the improved antibacterial and antibiofilm activity. The possible mechanisms of antibacterial activities indicate that the presence of FA is significant in the sense of targeting bacteria. This study shows a novel approach to construct acid stimulation supply system which may be helpful for the research of antibiofilms.
Collapse
Affiliation(s)
- Meizhe Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gaoke Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peili Li
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haojie Lu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wentao Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xu Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ruobing Huang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fan Yu
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Wenzhen Wu
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Yuhong Xiao
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Xiaodong Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
8
|
Ghosh K, Srivastava SK. Enhanced Supercapacitor Performance and Electromagnetic Interference Shielding Effectiveness of CuS Quantum Dots Grown on Reduced Graphene Oxide Sheets. ACS OMEGA 2021; 6:4582-4596. [PMID: 33644566 PMCID: PMC7905797 DOI: 10.1021/acsomega.0c05034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 05/05/2023]
Abstract
This study is focused on the preparation of the CuS/RGO nanocomposite via the hydrothermal method using GO and Cu-DTO complex as precursors. X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopy study revealed the formation of the CuS/RGO nanocomposite with improved crystallinity, defective nanostructure, and the presence of the residual functional group in the RGO sheet. The morphological study displayed the transformation of CuS from nanowire to quantum dots with the incorporation of RGO. The galvanostatic charge/discharge curve showed that the CuS/RGO nanocomposite (12 wt % Cu-DTO complex) has tremendous and outperforming specific capacitance of 3058 F g-1 at 1 A g-1 current density with moderate cycling stability (∼60.3% after 1000 cycles at 10 A g-1). The as-prepared nanocomposite revealed excellent improvement in specific capacitance, cycling stability, Warburg impedance, and interfacial charge transfer resistance compared to neat CuS. The fabricated nanocomposites were also investigated for their bulk DC electrical conductivity and EMI shielding ability. It was observed that the CuS/RGO nanocomposite (9 wt % Cu-DTO) exhibited a total electromagnetic shielding efficiency of 64 dB at 2.3 GHz following absorption as a dominant shielding mechanism. Such a performance is ascribed to the presence of interconnected networks and synergistic effects.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Department of Chemistry, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | | |
Collapse
|
9
|
Photoelectrochemical aptasensor for thrombin based on Au-rGO-CuS as signal amplification elements. Mikrochim Acta 2020; 187:433. [PMID: 32638089 DOI: 10.1007/s00604-020-04380-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/07/2020] [Indexed: 02/04/2023]
Abstract
A photoelectrochemical platform for thrombin determination was developed based on Au-rGO-CuS as multiple signal amplification elements. CuInS2 QDs was used to sensitize burr-shape TiO2 (b-TiO2) to obtain a strong photocurrent. Under the specific recognition between aptamer and thrombin, a sandwichlike structure was formed and the Au-rGO-CuS-labeled aptamer (S2@Au-rGO-CuS) was immobilized on the electrode surface. This induced a sharp decrease in photocurrent. The phenomenon is mainly due to the fact that CuS NPs can competitively consume the light energy and electron donor with CuInS2/b-TiO2. The rGO can increase the amount of CuS NPs and the Au NPs can accelerate charge transferring which depress the recombination of photogenerated electrons and holes in CuS to further enhance the competitive capacity of CuS. The sandwichlike structure has a steric hindrance effect. Therefore, the S2@Au-rGO-CuS has a multiple signal amplification function for thrombin determination. Under optimal conditions, the PEC aptasensor exhibited a wide linear concentration range from 0.1 pM to 10 nM with a low detection limit of 30 fM (S/N = 3) for thrombin. Besides, the designed aptasensor performed well in the assay of human serum sample, indicating good potential for the determination of thrombin in real samples. Graphical abstract.
Collapse
|
10
|
Wang J, Wang Y, Zhang D, Chen C. Intrinsic Oxidase-like Nanoenzyme Co 4S 3/Co(OH) 2 Hybrid Nanotubes with Broad-Spectrum Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29614-29624. [PMID: 32501670 DOI: 10.1021/acsami.0c05141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Improving the antibacterial activity of nanomaterials and avoiding the use of H2O2 are vital for biosecurity and public health. In this work, novel Co4S3/Co(OH)2 hybrid nanotubes (HNTs) for the first time were successfully synthesized through the control of Na2S treatment of Co(CO3)0.35Cl0.20(OH)1.10 precursor. On the basis of Kirkendall effect, acicular precursor was vulcanized to form Co4S3/Co(OH)2 HNTs that possess great properties including favorable storage ability and ideal stability. By tailoring the composition and structure, Co4S3/Co(OH)2 HNTs were found to have profound oxidase-like catalytic activities. When pH = 3 precursor was treated with 900 mg of Na2S, Co4S3/Co(OH)2 HNTs exhibit superior performance. Owing to the outstanding oxidase-like activity, Co4S3/Co(OH)2 HNTs can eliminate Escherichia coli, Pseudomonas aeruginosa, Staphylococcus sciuri, and Bacillus without the help of H2O2. It turned out that the sterilization ability came from the superoxide anion radical generated by Co4S3/Co(OH)2 HNTs. With Co4S3/Co(OH)2 HNTs, the intracellular reactive oxygen species level can be enhanced and the toxicity of H2O2 can be absolutely avoided. Overall, the synthesis of antibacterial nanomaterials is unparalleled and the results of this work would facilitate the utilization in medical science, new energy, and environmental catalysis.
Collapse
Affiliation(s)
- Jin Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, No. 19 (Jia) Yuquan Road, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Yi Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Dun Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Chao Chen
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, No. 19 (Jia) Yuquan Road, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
11
|
Zhang X, Gao Y. 2D/2D h‐BN/N‐doped MoS
2
Heterostructure Catalyst with Enhanced Peroxidase‐like Performance for Visual Colorimetric Determination of H
2
O
2. Chem Asian J 2020; 15:1315-1323. [DOI: 10.1002/asia.201901753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Zhang
- College of Chemical Engineering Inner Mongolia University of Technology 49 Aimin Road Hohhot 010051 China
| | - Yanfang Gao
- College of Chemical Engineering Inner Mongolia University of Technology 49 Aimin Road Hohhot 010051 China
| |
Collapse
|
12
|
Urchin-like CuS nanostructures: simple synthesis and structural optimization with enhanced photocatalytic activity under direct sunlight. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01283-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Ray S, Biswas R, Banerjee R, Biswas P. A gold nanoparticle-intercalated mesoporous silica-based nanozyme for the selective colorimetric detection of dopamine. NANOSCALE ADVANCES 2020; 2:734-745. [PMID: 36133250 PMCID: PMC9418996 DOI: 10.1039/c9na00508k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 05/04/2023]
Abstract
Highly dispersed aggregation-free gold nanoparticles intercalated into the walls of mesoporous silica (AuMS) were synthesized using thioether-functionalized silica as a nanozyme, which exhibited an excellent peroxidase mimic activity. The AuMS material was characterized via XRD, N2 adsorption-desorption, FESEM, SEM-EDS particle mapping, TEM, and XPS. The peroxidase-like activity of the AuMS material was studied thoroughly, and the effect of pH and temperature was evaluated. The reproducibility of the peroxidase mimic activity and long-term stability of the AuMS catalyst were also studied. Furthermore, the AuMS catalyst was successfully utilized for the detection and quantification of dopamine, an important neurotransmitter, colorimetrically with a linear range of 10-80 μM and a limit of detection (LOD) value of 1.28 nM. The determination of dopamine concentration in commercially available dopamine hydrochloride injection showed high accuracy, good reproducibility, and high selectivity in the presence of uric acid, ascorbic acid, glucose, tryptophan, phenylalanine, and tyrosine.
Collapse
Affiliation(s)
- Shounak Ray
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah 711 103 West Bengal India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah 711 103 West Bengal India
| | - Rumeli Banerjee
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah 711 103 West Bengal India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah 711 103 West Bengal India
| |
Collapse
|
14
|
Liu D, Wang D, Jing X, Zhao X, Xi D, Dang D, Meng L. Continuous phase regulation of MoSe2 from 2H to 1T for the optimization of peroxidase-like catalysis. J Mater Chem B 2020; 8:6451-6458. [DOI: 10.1039/d0tb00115e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Simultaneous and synergistic modulation of the crystal phase and disorder in MoSe2 to dramatically enhance their peroxidase-like activity.
Collapse
Affiliation(s)
- Daomeng Liu
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Daquan Wang
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xunan Jing
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiaoping Zhao
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Duo Xi
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Dongfeng Dang
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Lingjie Meng
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
15
|
Yang J, Wang XY, Zhou L, Lu F, Cai N, Li JM. Highly sensitive SERS monitoring of catalytic reaction by bifunctional Ag-Pd triangular nanoplates. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Tan F, Wang Z, Yang Y, Xie X, Hua X, Yang X, Huang H. Facile preparation of peroxidase-like core-shell nanorods and application as platform for colorimetric determination of glucose, insulin and glucose/insulin ratio. Talanta 2019; 204:285-293. [PMID: 31357295 DOI: 10.1016/j.talanta.2019.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022]
Abstract
To obtain sensitive analytical detection methods, many unique materials have been developed and made them promising candidates for biosensing. In this study, a type of core-shell gold nanorods, GNR@Au2S/AuAgS/CuS, possessing peroxidase-like activity was prepared in a simple, facile manner. A colorimetric strategy for detection of blood glucose, insulin and differentiating type 1 and type 2 diabetes was developed based on the unique GNR@Au2S/AuAgS/CuS. The sensitive colorimetric approach for detection of glucose in the dynamic range of 2.5-200 μM was first established based on the catalytic performance of GNR@Au2S/AuAgS/CuS. Meanwhile, the catalytic activity of the peroxidase-like GNR@Au2S/AuAgS/CuS can be regulated by introducing the high affinity and specific reaction between DNA aptamer and insulin on the surface of GNR@Au2S/AuAgS/CuS, which allows the colorimetric assay to be extended to the detection of insulin, and a quantitative analysis of insulin based on the specific recognition can be implemented at the range from 0.014 to 1.08 μU/mL. Furthermore, colorimetric approach coupling peroxidase-like performance and specific recognition on the surface of GNR@Au2S/AuAgS/CuS nanoparticles was developed to measure glucose/insulin ratio and directly differentiate type 1 and type 2 diabetes mellitus. Practical human serum samples were tested and only the glucose/insulin ratio greater than 2.2 (μU/mL) may lead to the appearance of color change. The coupling of this different bioassay on the same nanoparticles reflects the versatility and integration characteristics of the colorimetric assay and is highly promising for improving diabetes management.
Collapse
Affiliation(s)
- Fang Tan
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhifang Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yan Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaoxue Xie
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinyi Hua
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiumei Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
17
|
Huang D, Wang L, Zhan Y, Zou L, Ye B. Photoelectrochemical biosensor for CEA detection based on SnS 2-GR with multiple quenching effects of Au@CuS-GR. Biosens Bioelectron 2019; 140:111358. [PMID: 31170655 DOI: 10.1016/j.bios.2019.111358] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 05/26/2019] [Indexed: 01/06/2023]
Abstract
A novel signal on-off type photoelectrochemical (PEC) biosensing system was designed for sensitive detection of carcinoembryonic antigen (CEA) based on tin disulfide nanosheets loaded on reduced graphene cxide (SnS2-GR) as the photoactive material and gold nanoparticles coated on reduced graphene oxide-functionalized copper sulfide (Au@CuS-GR) for signal amplification. It's the first time for SnS2-GR was exploited as a sensing matrix. Here, the photocurrent signals of SnS2 were amplified attributed to the sensitization effect of graphene. As signal amplifier, Au@CuS-GR could quench the photocurrents of SnS2-GR not only through the p-n type semiconductor quenching effect as well as the steric hindrance effect, but also as peroxidase mimetics to catalyze the oxidation of 4-Chloro-1-naphthol (4-CN) to produce insoluble product on the electrode surface. Based on the multiple signal amplification ability of Au@CuS-GR, CEA was detected sensitively with a linear range from 0.1 pg mL-1 to 10 ng mL-1 and limit of detection down to 59.9 fg mL-1 (S/N = 3). Meanwhile, the PEC biosensor displayed excellent performance in the assay of human serum sample, showing good application prospects for various target analysis.
Collapse
Affiliation(s)
- Di Huang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lu Wang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, PR China
| | - Yi Zhan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
18
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
19
|
Song W, Zhao B, Wang C, Ozaki Y, Lu X. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B 2019; 7:850-875. [DOI: 10.1039/c8tb02878h] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We highlight the recent developments in functional nanomaterials with unique enzyme-like characteristics for sensing applications.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yukihiro Ozaki
- School of Science and Technology
- Kwansei Gakuin Universty
- Hyogo 660-1337
- Japan
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
20
|
Fabrication of ternary MoS2-polypyrrole-Pd nanotubes as peroxidase mimics with a synergistic effect and their sensitive colorimetric detection of l-cysteine. Anal Chim Acta 2018; 1035:146-153. [DOI: 10.1016/j.aca.2018.06.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022]
|
21
|
Zhu W, Chi M, Gao M, Wang C, Lu X. Controlled synthesis of titanium dioxide/molybdenum disulfide core-shell hybrid nanofibers with enhanced peroxidase-like activity for colorimetric detection of glutathione. J Colloid Interface Sci 2018; 528:410-418. [DOI: 10.1016/j.jcis.2018.05.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
22
|
Green approach for in-situ growth of highly-ordered 3D flower-like CuS hollow nanospheres decorated on nitrogen and sulfur co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing of glucose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:576-588. [DOI: 10.1016/j.msec.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022]
|
23
|
Yang Z, Zhu Y, Nie G, Li M, Wang C, Lu X. FeCo nanoparticles-embedded carbon nanofibers as robust peroxidase mimics for sensitive colorimetric detection of l-cysteine. Dalton Trans 2018. [PMID: 28644494 DOI: 10.1039/c7dt01611e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A simple and low cost detection of l-cysteine is essential in the fields of biosensors and medical diagnosis. In this study, we have developed a simple electrospinning, followed by calcination process to prepare FeCo nanoparticles embedded in carbon nanofibers (FeCo-CNFs) as an efficient peroxidase-like mimic for the detection of l-cysteine. FeCo nanoparticles are uniformly dispersed within CNFs, and their diameters are highly influenced by the calcination temperature. The calcination temperature also influences the peroxidase-like catalytic activity, and the maximum activity is achieved at a calcination temperature of 550 °C. Owing to the high catalytic activity of the as-prepared FeCo-CNFs, a colorimetric technique for the rapid and accurate determination of l-cysteine has been developed. The detection limit is about 0.15 μM with a wide linear range from 1 to 20 μM. In addition, a high selectivity for the detection of l-cysteine over other amino acids, glucose and common ions is achieved. This study provides a simple, rapid and sensitive sensing platform for the detection of l-cysteine, which is a promising candidate for potential applications in biosensing, medicine, environmental monitoring.
Collapse
Affiliation(s)
- Zezhou Yang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Ma X, Wen S, Xue X, Guo Y, Jin J, Song W, Zhao B. Controllable Synthesis of SERS-Active Magnetic Metal-Organic Framework-Based Nanocatalysts and Their Application in Photoinduced Enhanced Catalytic Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25726-25736. [PMID: 29987930 DOI: 10.1021/acsami.8b03457] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fabrication of multifunctional nanocatalysts with surface-enhanced Raman scattering (SERS) activity is of vital importance for monitoring catalytic courses in situ and studying the reaction mechanisms. Herein, SERS-active magnetic metal-organic framework (MOF)-based nanocatalysts were successfully prepared via a three-step method, including a solvothermal reaction, an Au seed-induced growth process, and a low-temperature cycling self-assembly technique. The as-synthesized magnetic MOF-based nanocatalysts not only exhibit outstanding peroxidase-like activity, but can also be applied as a SERS substrate. Owing to these features, they can be used for monitoring in situ catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 via a SERS technique, and the concentration of H2O2 was determined. Owing to the intrinsic character of the Fe-based MOF material (MIL-100(Fe)), a novel photoinduced enhanced catalytic oxidation effect was demonstrated, in which the catalytic oxidation of TMB and o-phenylenediamine was accelerated. This study provides a versatile approach for the fabrication of functional MOF-based nanocomposites as a promising SERS substrate with a unique photoinduced enhanced peroxidase-like activity for potential applications in ultrasensitive monitoring, biomedical treatment, and environmental evaluation.
Collapse
Affiliation(s)
- Xiaowei Ma
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education , Jilin Normal University , Changchun 130103 , P. R. China
| | - Yue Guo
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Jing Jin
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
25
|
Wu J, Li S, Wei H. Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. NANOSCALE HORIZONS 2018; 3:367-382. [PMID: 32254124 DOI: 10.1039/c8nh00070k] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over decades, as alternatives to natural enzymes, highly-stable and low-cost artificial enzymes have been widely explored for various applications. In the field of artificial enzymes, functional nanomaterials with enzyme-like characteristics, termed as nanozymes, are currently attracting immense attention. Significant progress has been made in nanozyme research due to the exquisite control and impressive development of nanomaterials. Since nanozymes are endowed with unique properties from nanomaterials, an interesting investigation is multifunctionality, which opens up new potential applications for biomedical sensing and sustainable chemistry due to the combination of two or more distinct functions of high-performance nanozymes. To highlight the progress, in this review, we discuss two representative types of multifunctional nanozymes, including iron oxide nanomaterials with magnetic properties and metal nanomaterials with surface plasmon resonance. The applications are also covered to show the great promise of such multifunctional nanozymes. Future challenges and prospects are discussed at the end of this review.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | |
Collapse
|
26
|
Song W, Hildebrandt P, Weidinger IM. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
In the present study, we present nanostructured bimetallic Cu/CuCl/Cu2S/Au(Ag) supports that exhibit plasmonic electromagnetic field enhancement and peroxidase-like catalytic activity. The Cu2S component acts as the peroxidase-like catalyst, while the Au or Ag component provides the necessary light enhancement for surface enhanced Raman spectroscopic (SERS) studies of surface bound molecular reactants. As a test reaction the catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in presence of H2O2 was investigated. The comparison of product evolution in solution measured by UV-Vis spectroscopy and on the surface measured via SERS is able to give more insight into the different steps involved in the overall catalysis.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie , Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Inez M. Weidinger
- Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie , 01069 Dresden , Germany
| |
Collapse
|
27
|
Xie W, Schlücker S. Surface-enhanced Raman spectroscopic detection of molecular chemo- and plasmo-catalysis on noble metal nanoparticles. Chem Commun (Camb) 2018; 54:2326-2336. [PMID: 29387849 DOI: 10.1039/c7cc07951f] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The in situ detection of reactions catalyzed by metal NPs is challenging because the underlying chemical transformations occur at interfaces. Surface-enhanced Raman scattering (SERS), a surface-selective, sensitive and label-free vibrational spectroscopic technique, is ideally suited for monitoring of heterogeneous catalysis with high chemical specificity. A major limitation in the past, however, was that small, catalytically active metal NPs do not exhibit the high plasmonic activity required for SERS. This feature article focuses on the design, synthesis and use of bifunctional NPs with both catalytic and plasmonic activity for in situ SERS detection of reactions catalyzed by metal NPs. We focus on model reactions induced by chemical reducing agents such as hydride or molecular hydrogen as well as on plasmon-induced photo-catalysis including both photo-oxidation and photo-reduction. Finally, we highlight the concept of photo-recycling on halide-containing silver surfaces for unprecedented multi-electron reduction chemistry.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | |
Collapse
|
28
|
Synthesis of hierarchical Co 3O 4@NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine. Talanta 2018; 181:431-439. [PMID: 29426536 DOI: 10.1016/j.talanta.2018.01.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
Abstract
Fabrication of core-shell nanostructured catalyst is a promising way for tuning its catalytic performance due to the highly active interface and rich redox properties. In this work, hierarchical Co3O4@NiO core-shell nanotubes are fabricated by the deposition of NiO shells via a chemical bath treatment using electrospun Co-C composite nanofibers as templates, followed by a calcination process in air. The as-prepared Co3O4@NiO core-shell nanotubes exhibit a uniform and novel hollow structure with Co3O4 nanoparticles attached to the inner wall of NiO nanotubes and excellent catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Due to the synergistic effect, the peroxidase-like activity of the Co3O4@NiO core-shell nanotubes is much higher than that of individual Co3O4 and NiO components. Owing to the superior peroxidase-like activity, a simple and rapid colorimetric approach for the detection of dopamine with a detection limit of 1.21µM and excellent selectivity has been developed. It is anticipated that the prepared Co3O4@NiO core-shell nanotubes are promising materials applied for biomedical analysis and environmental monitoring.
Collapse
|
29
|
Lai H, Xu F, Zhang Y, Wang L. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. J Mater Chem B 2018; 6:4008-4028. [DOI: 10.1039/c8tb00902c] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene-based SERS substrates are classified and introduced, and their applications in biosensing-related fields are reviewed.
Collapse
Affiliation(s)
- Huasheng Lai
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Fugang Xu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Yue Zhang
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Li Wang
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| |
Collapse
|
30
|
Guo Y, Wang H, Ma X, Jin J, Ji W, Wang X, Song W, Zhao B, He C. Fabrication of Ag-Cu 2O/Reduced Graphene Oxide Nanocomposites as Surface-Enhanced Raman Scattering Substrates for in Situ Monitoring of Peroxidase-Like Catalytic Reaction and Biosensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19074-19081. [PMID: 28508627 DOI: 10.1021/acsami.7b02149] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly sensitive biosensors are essential in medical diagnostics, especially for monitoring the state of an individual's disease. An ideal way to achieve this objective is to analyze human sweat secretions by noninvasive monitoring. Due to low concentrations of target analytes in human secretions, fabrication of ultrasensitive detection devices is a great challenge. In this work, Ag-Cu2O/reduced graphene oxide (rGO) nanocomposites were prepared by a facile two-step in situ reduction procedure at room temperature. Ag-Cu2O/rGO nanocomposites possess intrinsic peroxidase-like activity and rapidly catalyze oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. On the basis of the excellent SERS properties and high peroxidase-like activity of the Ag-Cu2O/rGO nanocomposites, the catalytic oxidation of TMB can be monitored by SERS. This approach can detect H2O2 and glucose with high sensitivity and distinguish between diabetic and normal individuals using glucose levels in fingerprints. Our work provides direction for designing other SERS substrates with high catalytic activity and the potential for application in biosensing, forensic investigation, and medical diagnostics.
Collapse
Affiliation(s)
- Yue Guo
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, P.R. China
| | - Hai Wang
- China Japan Union Hospital, Jilin University , 126 Xian Tai Street, Changchun 130033, P. R. China
| | - Xiaowei Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, P.R. China
| | - Jing Jin
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, P.R. China
| | - Wei Ji
- School of Chemistry, Dalian University of Technology , Dalian 116023, P. R. China
| | - Xu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, P.R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, P.R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, P.R. China
| | - Chengyan He
- China Japan Union Hospital, Jilin University , 126 Xian Tai Street, Changchun 130033, P. R. China
| |
Collapse
|
31
|
Chen S, Chi M, Yang Z, Gao M, Wang C, Lu X. Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H2O2 and ascorbic acid. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00308k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H2O2 and ascorbic acid have been developed.
Collapse
Affiliation(s)
- Sihui Chen
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Maoqiang Chi
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zezhou Yang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Mu Gao
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|