1
|
Vergara D, Sanhueza C, Méndez S, Bustamante M, Vega B, Acevedo F, López O. Evaluation of Preclinical Efficacy of Curcumin-Loaded Bicosome Systems in Amelioration of Oral Mucositis. Pharmaceutics 2025; 17:181. [PMID: 40006548 PMCID: PMC11860046 DOI: 10.3390/pharmaceutics17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Oral mucositis (OM) is a common and debilitating side effect of cancer therapy, characterized by ulceration or inflammation of the oral mucosa. This study evaluates the preclinical efficacy of curcumin-loaded bicosome systems (cur-BS) in mitigating chemotherapy-induced OM in mice. METHODS BS were prepared using a combination of 1,2-di-palmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), α-tocopherol, and curcumin, encapsulated within liposomal vesicles. Three formulations with different curcumin concentrations (180, 540, and 900 μM) were characterized by particle size, polydispersity index (PDI), encapsulation efficiency (EE), appearance, and morphology. The formulation with the highest concentration (cur-BS 5×) was selected for ex vivo permeability studies, release profile analysis, and in vitro anti-inflammatory efficacy. OM was induced in mice using 5-fluorouracil (5-FU) and acetic acid. Cur-BS 5× was compared to the commercial product Dentoxol®. RESULTS The results showed that cur-BS 5× provided sustained release through a mechanism involving both diffusion and matrix relaxation, enhancing curcumin retention in deeper skin layers. Treatment with cur-BS 5× downregulated the expression of inflammatory markers (IL-1β and TNF-α). Macroscopic assessments demonstrated that both cur-BS 5× and Dentoxol® reduced OM severity, with the greatest improvement observed between days 6 and 9. By day 24, OM scores were 1.25 ± 0.5 for cur-BS 5× and 1.0 ± 0.0 for Dentoxol®, indicating effectiveness in both treatments. However, histological analysis revealed superior tissue recovery with cur-BS 5×, showing better epithelial structure and reduced inflammation. Cur-BS 5×-treated mice also exhibited greater weight recovery and higher survival rates compared to the Dentoxol® group. CONCLUSIONS These findings suggest that cur-BS 5× may enhance OM treatment, offering outcomes comparable to or better than those of Dentoxol®.
Collapse
Affiliation(s)
- Daniela Vergara
- Center of Excellence in Translational Medicine—Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (S.M.); (F.A.)
- Laboratory of Pharmaceutical and Cosmetic Bioproducts, Center of Excellence in Translational Medicine (CEMT), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudia Sanhueza
- Center for Resilience, Adaptation and Mitigation (CReAM), Universidad Mayor, Temuco 4780000, Chile;
- Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco 4780000, Chile
| | - Susana Méndez
- Center of Excellence in Translational Medicine—Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (S.M.); (F.A.)
| | - Mariela Bustamante
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus BIOREN, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Benjamín Vega
- Chemistry and Pharmacy Undergraduate Program Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Francisca Acevedo
- Center of Excellence in Translational Medicine—Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (S.M.); (F.A.)
- Laboratory of Pharmaceutical and Cosmetic Bioproducts, Center of Excellence in Translational Medicine (CEMT), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain;
| |
Collapse
|
2
|
Loza-Rodríguez N, Millán-Sánchez A, López O. A biocompatible lipid-based bigel for topical applications. Eur J Pharm Biopharm 2023; 190:24-34. [PMID: 37433416 DOI: 10.1016/j.ejpb.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
The development of biocompatible delivery systems is a necessity for medical and topical applications. Herein, the development of a new bigel for topical application is described. It is composed of 40% colloidal lipid hydrogel and 60% olive oil and beeswax oleogel. Its characterization and the potential of the bigel as a drug carrier through the skin was evaluated in vitro using fluorescence microscopy and two phases of the bigel were labeled with two fluorescent probes: sodium fluorescein (hydrophilic phase) and Nile red (lipophilic phase). The structure of the bigel showed two phases with fluorescence microscopy in which the hydrogel phase was incorporated into a continuous oleogel matrix. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) presented a combination of vibrations characteristic of the different molecules forming the bigel, and Differential Scanning Calorimetry (DSC) showed different transitions attributed to beeswax lipids. Small-angle and wide-angle X-ray scattering (SAXS and WAXS) indicated a predominant lamellar structure with orthorhombic lateral packing that could be related to the arrangement of beeswax crystals. Bigel enables deeper penetration of hydrophilic and lipophilic probes into deeper layers, making it a promising candidate for effective topical carriers in medical and dermatological applications.
Collapse
Affiliation(s)
- Noèlia Loza-Rodríguez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Bicosome S.L. C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Aina Millán-Sánchez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
3
|
Vergara D, López O, Sanhueza C, Chávez-Aravena C, Villagra J, Bustamante M, Acevedo F. Co-Encapsulation of Curcumin and α-Tocopherol in Bicosome Systems: Physicochemical Properties and Biological Activity. Pharmaceutics 2023; 15:1912. [PMID: 37514098 PMCID: PMC10383532 DOI: 10.3390/pharmaceutics15071912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
A novel co-encapsulation system called bicosomes (bicelles within liposomes) has been developed to overcome the limitations associated with the topical application of curcumin (cur) and α-tocopherol (α-toc). The physicochemical properties and biological activity in vitro of bicosome systems were evaluated. Bicelles were prepared with DPPC, DHPC, cur, and α-toc (cur/α-toc-bicelles). Liposomal vesicles loading cur/α-toc-bicelles were prepared with Lipoid P-100 and cholesterol-forming cur/α-toc-bicosomes. Three cur/α-toc-bicosomes were evaluated using different total lipid percentages (12, 16, and 20% w/v). The results indicated that formulations manage to solubilize cur and α-toc in homogeneous bicelles < 20 nm, while the bicosomes reaches 303-420 nm depending on the total lipid percentage in the systems. Bicosomes demonstrated high-encapsulation efficiency (EE) for cur (56-77%) and α-toc (51-65%). The loading capacity (LC) for both antioxidant compounds was 52-67%. In addition, cur/α-toc-bicosomes decreased the lipid oxidation by 52% and increased the antioxidant activity by 60% compared to unloaded bicosomes. The cell viability of these cur/α-toc-bicosomes was >85% in fibroblasts (3T3L1/CL-173™) and ≥65% in keratinocytes (Ha-CaT) and proved to be hematologically compatible. The cur/α-toc-bicelles and cur/α-toc-bicosomes inhibited the growth of C. albicans in a range between 33 and 76%. Our results propose bicosome systems as a novel carrier able to co-encapsulate, solubilize, protect, and improve the delivery performance of antioxidant molecules. The relevance of these findings is based on the synergistic antioxidant effect of its components, its biocompatibility, and its efficacy for dermal tissue treatment damaged by oxidative stress or by the presence of C. albicans. However, further studies are needed to assess the efficacy and safety of cur/α-toc bicosomes in vitro and in vivo.
Collapse
Affiliation(s)
- Daniela Vergara
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Claudia Sanhueza
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Catalina Chávez-Aravena
- Laboratory of Pharmaceutical and Cosmetic Bioproducts, Center of Excellence in Translational Medicine (CEMT), Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - José Villagra
- Laboratory of Pharmaceutical and Cosmetic Bioproducts, Center of Excellence in Translational Medicine (CEMT), Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Mariela Bustamante
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Francisca Acevedo
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| |
Collapse
|
4
|
Clède S, Sandt C, Dumas P, Policar C. Monitoring the Kinetics of the Cellular Uptake of a Metal Carbonyl Conjugated with a Lipidic Moiety in Living Cells Using Synchrotron Infrared Spectromicroscopy. APPLIED SPECTROSCOPY 2020; 74:63-71. [PMID: 31617373 DOI: 10.1177/0003702819877260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Presented here is the exploitation of synchrotron infrared spectromicroscopy to evaluate the feasibility of monitoring the cellular uptake of rhenium-tris-carbonyl-tagged (Re(CO)3) lipophilic chains in living cells. To this aim, an in-house thermostated microfluidic device was used to limit water absorption while keeping cells alive. Indeed, cells showed a high survival rate in the microfluidic device over the course of the experiment, proving the short-term biocompatibility of the device. We recorded spectra of single, living, fully hydrated breast cancer MDA-MB231 cells and could follow the penetration of the rhenium complexes for up to 2 h. Despite the strong variations observed in the uptake kinetics between individual cells, the Re(CO)3 complex was traced inside the cells at low concentration and shown to enter them on the hour time scale by active transport.
Collapse
Affiliation(s)
- Sylvain Clède
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne université, Paris, France
| | - Christophe Sandt
- SMIS beamline, SOLEIL synchrotron, L'orme des Merisiers, Gif sur Yvette, France
| | - Paul Dumas
- SMIS beamline, SOLEIL synchrotron, L'orme des Merisiers, Gif sur Yvette, France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne université, Paris, France
| |
Collapse
|
5
|
Moner V, Fernández E, Calpena AC, Garcia-Herrera A, Cócera M, López O. A lamellar body mimetic system for the treatment of oxazolone-induced atopic dermatitis in hairless mice. J Dermatol Sci 2018; 90:172-179. [PMID: 29395580 DOI: 10.1016/j.jdermsci.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atopic dermatitis is a common skin disease characterized by a Th2 cell-dominant inflammatory infiltrate, elevated serum IgE levels and impaired epidermal barrier function. It is associated to abnormal epidermal lamellar body secretion, producing alteration in lipid composition and extracellular lamellar membrane organization. OBJECTIVES The oxazolone-induced atopic dermatitis in hairless mice was used to evaluate in vivo the effect of the application of a lipid system that mimics the morphology, structure and composition of epidermal lamellar bodies. METHODS The skin barrier function was evaluated measuring TEWL and skin hydration in vivo. Inflammation was assessed by analysis of serum IgE levels and histological analysis. The microstructure of the intercellular lipid region was also evaluated before and after treatment. RESULTS The skin condition was improved after 10 days of treatment indicated by decreased TEWL, decreased serum IgE levels, reduced epidermal thickness and reduced lymphocyte-dominated infiltrate. However, the treatment did no improve skin hydration. CONCLUSIONS The treatment with this lipid system seems to improve the skin condition by reinforcing the barrier function and reducing the skin inflammation. Therefore, the present study provides evidence that this lipid system combining appropriate lipid composition and morphology could be of interest for the development of future treatments for atopic dermatitis.
Collapse
Affiliation(s)
- Verónica Moner
- Department of chemical and surfactant technology. Institute of Advanced Chemistry of Catalonia (IQAC-CSIC). C/Jordi Girona 18-26, 08034. Barcelona, Spain.
| | | | - Ana Cristina Calpena
- Department of pharmacy and pharmaceutical technology. Faculty of Pharmacy, University of Barcelona. C/Joan XXII 27-31, 08028. Barcelona, Spain
| | | | | | - Olga López
- Department of chemical and surfactant technology. Institute of Advanced Chemistry of Catalonia (IQAC-CSIC). C/Jordi Girona 18-26, 08034. Barcelona, Spain
| |
Collapse
|
6
|
Moner V, Fernández E, Del Pozo A, Rodríguez G, Cócera M, de la Maza A, López O. Sorption-desorption test for functional assessment of skin treated with a lipid system that mimics epidermal lamellar bodies. Contact Dermatitis 2017; 77:25-34. [PMID: 28300294 DOI: 10.1111/cod.12771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Many skin diseases are associated with either increases or decreases in lamellar body secretion, or dysfunctional lamellar bodies. Consequently, diseased skin is characterized by reduced barrier function and altered lipid composition and organization. Human skin is commonly evaluated in vivo with non-invasive biophysical techniques. The dynamic functions of the skin are evaluated with repeat measurements such as the sorption-desorption test (SDT). OBJECTIVES The aim of this study was to evaluate in vivo skin hydration-dehydration kinetics after treatment with a lipid system that mimics the morphology, structure and composition of lamellar bodies in both healthy and irritated human skin. METHODS A patch with an aqueous solution of 2% sodium lauryl sulfate (SLS) was used to irritate the skin of the volunteers. The SDT was performed with the CM 820 corneometer. RESULTS After treatment with this system, both healthy and SLS-irritated skin increased their ability to retain water and to release water slowly during the desorption phase. CONCLUSIONS Treatment with this system seems to reinforce the barrier function in both healthy and SLS-irritated human skin. Therefore, the present study provides evidence that this system could be of interest for developing future treatments for protecting and repairing the skin.
Collapse
Affiliation(s)
- Verónica Moner
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034, Barcelona, Spain
| | | | - Alfonso Del Pozo
- Faculty of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Barcelona, 08028, Barcelona, Spain
| | | | | | - Alfonso de la Maza
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034, Barcelona, Spain
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034, Barcelona, Spain
| |
Collapse
|