1
|
Sadri N, Mazloum-Ardakani M, Asadpour F, Joseph Y, Rahimi P. An Enzyme-Free Impedimetric Sensor Based on Flower-like NiO/Carbon Microspheres for L-Glutamic Acid Assay. BIOSENSORS 2024; 14:543. [PMID: 39590002 PMCID: PMC11591706 DOI: 10.3390/bios14110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
This research introduces a non-enzymatic electrochemical sensor utilizing flower-like nickel oxide/carbon (fl-NiO/C) microspheres for the precise detection of L-glutamic acid (LGA), a crucial neurotransmitter in the field of healthcare and a frequently utilized food additive and flavor enhancer. The fl-NiO/C were synthesized with controllable microstructures using metal-organic frameworks (MOFs) as precursors followed by a simple calcination process. The uniformly synthesized fl-NiO/C microspheres were further characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM). The fl-NiO/C was utilized as a modifier on the surface of a glassy carbon electrode, and an impedimetric sensor based on electrochemical impedance spectroscopy (EIS) was developed for the detection of LGA. The proposed sensor demonstrated excellent catalytic activity and selectivity towards LGA across a broad concentration range of 10-800 μM with a sensitivity of 486.9 µA.mM-1.cm-2 and a detection limit of 1.28 µM (S/N = 3). The sensor was also employed to identify LGA in blood plasma samples, yielding results that align with those obtained through HPLC. This achievement highlights the potential of fl-NiO/C microspheres in advancing cutting-edge biosensing applications.
Collapse
Affiliation(s)
- Najva Sadri
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran;
| | | | - Farzaneh Asadpour
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, OH 45221-0172, USA;
| | - Yvonne Joseph
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Parvaneh Rahimi
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| |
Collapse
|
2
|
Mishra A, Priyadarshini N, Mansingh S, Parida K. Recent advancement in LaFeO 3-mediated systems towards photocatalytic and photoelectrocatalytic hydrogen evolution reaction: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103300. [PMID: 39270595 DOI: 10.1016/j.cis.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
The present disrupted scenario of the world calls for urgent attention to the need for renewable resources as an energy source for harnessing and feeding uninterrupted power supply to mankind. Amidst this, Photocatalysis (PC) and Photoelectrocatalysis (PEC) are some of the most budding methods of exploiting solar energy. LaFeO3-based systems are eligible for PC/PEC Hydrogen (H2) generation, incorporating the process of water splitting, etc. It would be fair to mention that the above methods can mimic the natural process of photosynthesis. This review comprises an encyclopedia of recent advancements in LaFeO3 and modified systems towards sustainable Photocatalytic and Photoelectrocatalytic Hydrogen Evolution Reactions (HER). Besides the challenges, the review presents a clear and brief idea for the scientific research community on paving the future in upscaling and industrializing the LaFeO3-mediated green fuel (H2) generation to meet global energy needs.
Collapse
Affiliation(s)
- Anshumika Mishra
- Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Odisha, India
| | - Newmoon Priyadarshini
- Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Odisha, India
| | - Sriram Mansingh
- Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Odisha, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Odisha, India.
| |
Collapse
|
3
|
Yu XY, He JY, Tang F, Yu P, Wu L, Xiao ZL, Sun LX, Cao Z, Yu D. Highly sensitive determination of L-glutamic acid in pig serum with an enzyme-free molecularly imprinted polymer on a carbon-nanotube modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5589-5597. [PMID: 37850367 DOI: 10.1039/d3ay01499a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Through electrochemical polymerization using L-glutamic acid (L-Glu) as a template and 4,6-diaminoresorcinol as a functional monomer, an enzyme-free molecularly imprinted polymer (MIP) based L-Glu sensor with multi-walled carbon nanotubes (MWCNTs) decorated on a glassy carbon electrode (GCE), namely G-MIP/MWCNTs/GCE, was developed in this work. The reaction conditions were optimized as follows: electrochemical polymerization of 23 cycles, pH of 3.0, molar ratio of template/monomer of 1 : 4, volume ratio of elution reagents of acetonitrile/formic acid of 1 : 1, and elution time of 2 min. The prepared materials and molecularly imprinted polymer were characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as electrochemical methods. The electrochemical properties of different electrodes were investigated via differential pulse voltammetry (DPV), showing that the electrode of G-MIP/MWCNTs/GCE exhibited excellent catalytic oxidation activity towards L-Glu. A good linear relationship between peak-currents and L-Glu concentrations in a range from 1.00 × 10-8 to 1.00 × 10-5 mol L-1 was observed, with a detection limit of 5.13 × 10-9 mol L-1 (S/N = 3). The imprinted sensor possesses excellent selectivity, high sensitivity, and good stability, which have been successfully applied for the detection of L-Glu in pig serum samples with a recovery rate of 97.4-105.5%, being comparable to commercial high-performance liquid chromatography, demonstrating a simple, rapid, and accurate way for the determination of L-Glu in the fields of animal nutrition and biomedical engineering.
Collapse
Affiliation(s)
- Xin-Yao Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Jun-Yi He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Fei Tang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Peng Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Zhong-Liang Xiao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Li-Xian Sun
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, East, Denmark.
| |
Collapse
|
4
|
Sharma P, Thakur D, Kumar D. Novel Enzymatic Biosensor Utilizing a MoS 2/MoO 3 Nanohybrid for the Electrochemical Detection of Xanthine in Fish Meat. ACS OMEGA 2023; 8:31962-31971. [PMID: 37692241 PMCID: PMC10483649 DOI: 10.1021/acsomega.3c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
A rapid, reliable, and user-friendly electrochemical sensor was developed for the detection of xanthine (Xn), an important biomarker of food quality. The developed sensor is based on a nanocomposite comprised of molybdenum disulfide-molybdenum trioxide (MoS2/MoO3) and synthesized using a single-pot hydrothermal method. Structural analysis of the MoS2/MoO3 nanocomposite was conducted using X-ray diffraction (XRD) and Raman spectroscopy, while its compositional properties were evaluated through X-ray photoelectron spectroscopy (XPS). Morphological features were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Two-dimensional (2D) MoS2 offers advantages such as a high surface-to-volume ratio, biocompatibility, and strong light-matter interaction, whereas MoO3 serves as an effective electron transfer mediator and exhibits excellent stability in aqueous environments. The enzymatic biosensor derived from this nanocomposite demonstrates remarkable cyclic stability and a low limit of detection of 64 nM. It enables rapid, reproducible, specific, and reproducible detection over 10 cycles while maintaining a shelf life of more than 5 weeks. These findings highlight the potential of our proposed approach for the development of early detection devices for Xn.
Collapse
Affiliation(s)
- Prateek Sharma
- GNIOT
Institute of Professional Studies, Greater
Noida Institute of Technology, Knowledge Park-II, Greater
Noida, Uttar Pradesh201310, India
| | - Deeksha Thakur
- Department
of Applied Chemistry, Delhi Technological
University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Devendra Kumar
- Department
of Applied Chemistry, Delhi Technological
University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| |
Collapse
|
5
|
Alotaibi MT, Mogharbel RT, Alorabi AQ, Alamrani NA, Shahat A, El-Metwaly NM. Superior adsorption and removal of toxic industrial dyes using cubic Pm3n aluminosilica form an aqueous solution, Isotherm, Kinetic, thermodynamic and mechanism of interaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 2023; 230:115390. [PMID: 37079932 DOI: 10.1016/j.jpba.2023.115390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Amino acids are the building blocks of proteins and muscle tissue. They also play a significant role in physiological processes related to energy, recovery, mood, muscle and brain function, fat burning and stimulating growth hormone or insulin secretion. Accurate determination of amino acids in biological fluids is necessary because any changes in their normal ranges in the body warn diseases like kidney disease, liver disease, type 2 diabetes and cancer. To date, many methods such as liquid chromatography, fluorescence mass spectrometry, etc. have been used for the determination of amino acids. Compared with the above techniques, electrochemical systems using modified electrodes offer a rapid, accurate, cheap, real-time analytical path through simple operations with high selectivity and sensitivity. Nanomaterials have found many interests to create smart electrochemical sensors in different application fields e.g. biomedical, environmental, and food analysis because of their exceptional properties. This review summarizes recent advances in the development of nanomaterial-based electrochemical sensors in 2017-2022 for the detection of amino acids in various matrices such as serum, urine, blood and pharmaceuticals.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hosein Afshary
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Afruz
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
8
|
Subaihi A, Shahat A. Synthesis and characterization of super high surface area silica-based nanoparticles for adsorption and removal of toxic pharmaceuticals from aqueous solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Althumayri K, Guesmi A, El-Fattah WA, Houas A, Hamadi NB, Shahat A. Enhanced Adsorption and Evaluation of Tetracycline Removal in an Aquatic System by Modified Silica Nanotubes. ACS OMEGA 2023; 8:6762-6777. [PMID: 36844599 PMCID: PMC9948198 DOI: 10.1021/acsomega.2c07377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In the present study, a nanocomposite adsorbent based on mesoporous silica nanotubes (MSNTs) loaded with 3-aminopropyltriethoxysilane (3-APTES@MSNTs) was synthesized. The nanocomposite was employed as an effective adsorbent for the adsorption of tetracycline (TC) antibiotics from aqueous media. It has an 848.80 mg/g maximal TC adsorption capability. The structure and properties of 3-APTES@MSNT nanoadsorbent were detected by TEM, XRD, SEM, FTIR, and N2 adsorption-desorption isotherms. The later analysis suggested that the 3-APTES@MSNT nanoadsorbent has abundant surface functional groups, effective pore size distribution, a larger pore volume, and a relatively higher surface area. Furthermore, the influence of key adsorption parameters, including ambient temperature, ionic strength, initial TC concentration, contact time, initial pH, coexisting ions, and adsorbent dosage, had also been investigated. The 3-APTES@MSNT nanoadsorbent's ability to adsorb the TC molecules was found to be more compatible with Langmuir isothermal and pseudo-second-order kinetic models. Moreover, research on temperature profiles pointed to the process' endothermic character. In combination with the characterization findings, it was logically concluded that the 3-APTES@MSNT nanoadsorbent's primary adsorption processes involved interaction, electrostatic interaction, hydrogen bonding interaction, and the pore-fling effect. The synthesized 3-APTES@MSNT nanoadsorbent has an interestingly high recyclability of >84.6 percent up to the fifth cycle. The 3-APTES@MSNT nanoadsorbent, therefore, showed promise for TC removal and environmental cleanup.
Collapse
Affiliation(s)
- Khalid Althumayri
- Department
of Chemistry, College of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Ahlem Guesmi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Wesam Abd El-Fattah
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Port Said
University, Port Said 42511, Egypt
| | - Ammar Houas
- Research
Laboratory of Catalysis and Materials for Environment and Processes, University of Gabes, City Riadh Zerig, Gabes 6029, Tunisia
| | - Naoufel Ben Hamadi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Faculty
of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural
Products and Reactivity (LR11ES39), University
of Monastir, Avenue of
Environment, Monastir 5019, Tunisia
| | - Ahmed Shahat
- Department
of Chemistry, Faculty of Science, Suez University, Suez 41522, Egypt
| |
Collapse
|
10
|
Ali MY, Knight D, Howlader MMR. Nonenzymatic Electrochemical Glutamate Sensor Using Copper Oxide Nanomaterials and Multiwall Carbon Nanotubes. BIOSENSORS 2023; 13:237. [PMID: 36832003 PMCID: PMC9954524 DOI: 10.3390/bios13020237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 05/28/2023]
Abstract
Glutamate is an important neurotransmitter due to its critical role in physiological and pathological processes. While enzymatic electrochemical sensors can selectively detect glutamate, enzymes cause instability of the sensors, thus necessitating the development of enzyme-free glutamate sensors. In this paper, we developed an ultrahigh sensitive nonenzymatic electrochemical glutamate sensor by synthesizing copper oxide (CuO) nanostructures and physically mixing them with multiwall carbon nanotubes (MWCNTs) onto a screen-printed carbon electrode. We comprehensively investigated the sensing mechanism of glutamate; the optimized sensor showed irreversible oxidation of glutamate involving one electron and one proton, and a linear response from 20 μM to 200 μM at pH 7. The limit of detection and sensitivity of the sensor were about 17.5 μM and 8500 μA·mM-1·cm-2, respectively. The enhanced sensing performance is attributed to the synergetic electrochemical activities of CuO nanostructures and MWCNTs. The sensor detected glutamate in whole blood and urine and had minimal interference with common interferents, suggesting its potential for healthcare applications.
Collapse
Affiliation(s)
- Md Younus Ali
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Dorian Knight
- Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
11
|
Construction of minitype glutamate sensor for in vivo monitoring of L-glutamate in plant. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Alfaifi SY, Adeosun WA, Asiri AM, Rahman MM. Sensitive and Rapid Detection of Aspartic Acid with Co 3O 4-ZnO Nanorods Using Differential Pulse Voltammetry. BIOSENSORS 2023; 13:88. [PMID: 36671923 PMCID: PMC9855673 DOI: 10.3390/bios13010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Herein, the detection of aspartic acid by doped Co3O4-ZnO nanorod materials was proposed using differential pulse voltammetry. The nano-composite metal oxide was synthesized by the wet precipitation method in basic media. Aspartic acid is a non-essential amino acid naturally synthesized in the body with lot of health significance, including as a biomarker for several health deficiencies. The synthesized composite Co3O4-ZnO nanorod was well-investigated by using FESEM, XRD, XPS, FTIR, UV/vis., EIS, and CV. The synthesized composite exhibited a low limit of detection (0.03 µM, high sensitivity (0.0014 µA µM-1 cm-2) and wide linear range (0.05-50 µM) for aspartic acid. The substrate, the Co3O4-ZnO nanorod, enhanced the electro-catalytic oxidation of aspartic acid as a result of its catalytic and conductivity properties. The developed sensor based on Co3O4-ZnO has a repeatable, reproducible and stable current response for aspartic acid. Additionally, other electroactive compounds did not interfere with the sensor's current response. The suitability of the developed sensor for real sample analysis was also established. Therefore, this study proposed the potential use of Co3O4-ZnO nanorod material in healthcare management for the maintenance of human well-being.
Collapse
Affiliation(s)
- Sulaiman Y. Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Waheed Abiodun Adeosun
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Al-Hazmi GH, Refat MS, Alshammari KF, Kubra KT, Shahat A. Efficient toxic doxorubicin hydrochloride removal from aqueous solutions using facial alumina nanorods. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Rezaie M, Nemati F, Firoozbakhtian A, Tabesh H, Ganjali MR, Hosseini M. Three‐Dimensional Graphene Network Decorated with Bimetallic Cerium/Copper Oxide Nanoparticles for Non‐Enzymatic Diagnosis of Phenylketonuria. ChemistrySelect 2022. [DOI: 10.1002/slct.202203123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maryam Rezaie
- Nanobiosensors Lab Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| | - Fatemeh Nemati
- Nanobiosensors Lab Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| | - Hadi Tabesh
- Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry School of Chemistry College of Science University of Tehran Tehran 1439817435 Iran
| | - Morteza Hosseini
- Nanobiosensors Lab Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| |
Collapse
|
15
|
Rezaie M, Nemati F, Firoozbakhtian A, Tabesh H, Hosseini M. Three-dimensional Graphene Network Decorated with Bimetallic Cerium/Copper Oxide Nanoparticles for Non-enzymatic Diagnosis of Phenylketonuria. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Alharbi A, Al-Ahmed ZA, El-Metwaly NM, Shahat A, El-Bindary M. A novel strategy for preparing metal-organic framework as a smart material for selective detection and efficient extraction of Pd(II) and Au(III) ions from E-wastes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Sensitive and Rapid Detection of Glutamic Acid in Colloidal Solution by Surfactant Mediated Silver Nanoparticles. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Albaqami MD, Medany SS, Nafady A, Ibupoto MH, Willander M, Tahira A, Aftab U, Vigolo B, Ibupoto ZH. The fast nucleation/growth of Co 3O 4 nanowires on cotton silk: the facile development of a potentiometric uric acid biosensor. RSC Adv 2022; 12:18321-18332. [PMID: 35799920 PMCID: PMC9215123 DOI: 10.1039/d2ra03149c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023] Open
Abstract
In this study, we have used cotton silk as a source of abundant hydroxyl groups for the fast nucleation/growth of cobalt oxide (Co3O4) nanowires via a hydrothermal method. The crystal planes of the Co3O4 nanowires well matched the cubic phase. The as-synthesized Co3O4 nanowires mainly contained cobalt and oxygen elements and were found to be highly sensitive towards uric acid in 0.01 M phosphate buffer solution at pH 7.4. Importantly, the Co3O4 nanowires exhibited a large surface area, which was heavily utilized during the immobilization of the enzyme uricase via a physical adsorption method. The potentiometric response of the uricase-immobilizing Co3O4 nanowires was measured in the presence of uric acid (UA) against a silver/silver chloride (Ag/AgCl) reference electrode. The newly fabricated uric acid biosensor possessed a low limit of detection of 1.0 ± 0.2 nM with a wide linear range of 5 nM to 10 mM and sensitivity of 30.6 mV dec-1. Additionally, several related parameters of the developed uric acid biosensor were investigated, such as the repeatability, reproducibility, storage stability, selectivity, and dynamic response time, and these were found to be satisfactory. The good performance of the Co3O4 nanowires was verified based on the fast charge-transfer kinetics, as confirmed via electrochemical impedance spectroscopy. The successful practical use of the uric acid biosensor was demonstrated based on the recovery method. The observed performance of the uricase-immobilizing Co3O4 nanowires revealed that they could be considered as a promising and alternative tool for the detection of uric acid under both in vitro and in vivo conditions. Also, the use of cotton silk as a source of abundant hydroxyl groups may be considered for the remarkably fast nucleation/growth of other metal-oxide nanostructures, thereby facilitating the fabrication of functional electrochemical devices, such as batteries, water-splitting devices, and supercapacitors.
Collapse
Affiliation(s)
- Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Shymaa S Medany
- Department of Chemistry, Faculty of Science, Cairo University Cairo Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | | | - Magnus Willander
- Department of Science and Technology, Campus Norrköping, Linköping University SE-60174 Norrköping Sweden
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Sindh Pakistan
| | | | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| |
Collapse
|
19
|
Alam MM, Asiri AM, Rahman MM. An Efficient Enzyme-Less Uric Acid Sensor Development Based on PbO-Doped NiO Nanocomposites. BIOSENSORS 2022; 12:bios12060381. [PMID: 35735529 PMCID: PMC9221126 DOI: 10.3390/bios12060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Here, the voltammetric electrochemical approach was applied to detect uric acid (UA) in a conductive sensing medium (phosphate buffer solution-PBS) by using PbO-doped NiO nanocomposites (NCs)-decorated glassy carbon electrode (GCE) performing as working electrode. The wet-chemically prepared PbO-doped NiO NCs were subjected to characterization by the implementation of XRD, FESEM, XPS, and EDS analysis. The modified GCE was used to detect uric acid (UA) in an enzyme-free conductive buffer (PBS) of pH = 7.0. As the outcomes of this study reveal, it exhibited good sensitivity of 0.2315 µAµM−1cm−2 and 0.2233 µAµM−1cm−2, corresponding to cyclic (CV) and differential pulse (DPV) voltammetric analysis of UA, respectively. Furthermore, the proposed UA sensor showed a wider detection (0.15~1.35 mM) range in both electrochemical analysis methods (CV & DPV). In addition, the investigated UA sensor displayed appreciable limit of detection (LOD) of 41.0 ± 2.05 µM by CV and 43.0 ± 2.14 µM by DPV. Good reproducibility performance, faster response time and long-time stability in detection of UA were perceived in both electrochemical analysis methods. Finally, successful analysis of the bio-samples was performed using the recovery method, and the results were found to be quite acceptable in terms of accuracy. Thus, the findings indicate a reliable approach for the development of 5th generation biosensors using metal-oxides as sensing substrate to fulfill the requirements of portable use for in situ detection.
Collapse
Affiliation(s)
- Md Mahmud Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.M.A.); (A.M.A.)
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.M.A.); (A.M.A.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.M.A.); (A.M.A.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
20
|
Wei X, Chen Y, He S, Lian H, Cao X, Liu B. L-histidine-regulated zeolitic imidazolate framework modified electrochemical interface for enantioselective determination of L-glutamate. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Hussain MM, Asiri AM, Uddin J, Rahman MM. An enzyme free simultaneous detection of γ-amino-butyric acid and testosterone based on copper oxide nanoparticles. RSC Adv 2021; 11:20794-20805. [PMID: 35479338 PMCID: PMC9033999 DOI: 10.1039/d1ra02709c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/22/2021] [Indexed: 01/11/2023] Open
Abstract
Herein, an easy wet-chemical process was used in basic medium with low temperature to prepare low-dimensional copper oxide nanoparticles (CuO NPs). A variety of optical and structural techniques such as UV-visible, FT-IR, XRD, FESEM, XEDS, and XPS were used to characterize the synthesized CuO NPs in detail. Two sensitive and selective sensor probes for γ-amino-butyric acid (GABA) and testosterone (TST) were achieved after modification; a thin layer of NPs on a flat glassy carbon electrode (GCE). Sensor analytical parameters such as sensitivity (SNT), linear dynamic range (LDR), limit of detection (LOD), limit of quantification (LOQ), robustness, and interference effects, were evaluated for the proposed sensor (GCE/CuO NPs) for GABA and TST, based on a dependable current-voltage technique. Calibration curves were found to be linear (R 2 = 0.9963 and 0.9095) over a broad concentration range of GABA and TST (100.0 pM to 100.0 mM and 10.0 pM to 10.0 mM, respectively). Sensor parameters - SNT (316.46 and 2848.10 pA μM-1 cm-2), LDR (100.0 nM to 10.0 mM and 10.0 pM to 1.0 mM), LOD (≈11.70 and 96.67 pM), and LOQ (39.0 and 322.2 pM) - for GABA and TST were calculated from the calibration plot successively. Preparation of CuO NPs using the wet-chemical technique is a good approach for perspective expansion of NPs-based sensors for the enzyme-free detection of biomolecules. Our sensor probe (GCE/CuO NPs) is applied for the cautious recognition of GABA and TST in real biological samples -human, mouse, and rabbit serum - and achieved good and acceptable results.
Collapse
Affiliation(s)
- Mohammad Musarraf Hussain
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia.,Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University Dhaka-1100 Bangladesh
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore MD 21216 USA
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
22
|
Islam A, Teo SH, Ahmed MT, Khandaker S, Ibrahim ML, Vo DVN, Abdulkreem-Alsultan G, Khan AS. Novel micro-structured carbon-based adsorbents for notorious arsenic removal from wastewater. CHEMOSPHERE 2021; 272:129653. [PMID: 33486455 DOI: 10.1016/j.chemosphere.2021.129653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The contamination of groundwater by arsenic (As) in Bangladesh is the biggest impairing of a population, with a large number of peoples affected. Specifically, groundwater of Gangetic Delta is alarmingly contaminated with arsenic. Similar, perilous circumstances exist in many other countries and consequently, there is a dire need to develop cost-effective decentralized filtration unit utilizing low-cost adsorbents for eliminating arsenic from water. Morphological synthesis of carbon with unique spherical, nanorod, and massive nanostructures were achieved by solvothermal method. Owing to their intrinsic adsorption properties and different nanostructures, these nanostructures were employed as adsorption of arsenic in aqueous solution, with the purpose to better understanding the morphological effect in adsorption. It clearly demonstrated that carbon with nanorods morphology exhibited an excellent adsorption activity of arsenite (about 82%) at pH 3, remarkably superior to the two with solid sphere and massive microstructures, because of its larger specific surface area, enhanced acid strength and improved adsorption capacity. Furthermore, we discovered that iron hydroxide radicals and energy-induced contact point formation in nanorods are the responsible for the high adsorption of As in aqueous solution. Thus, our work provides insides into the microstructure-dependent capability of different carbon for As adsorption applications.
Collapse
Affiliation(s)
- Aminul Islam
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Clean Energy and CO(2) Capture Lab, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Siow Hwa Teo
- Faculty Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Mohammad Tofayal Ahmed
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Clean Energy and CO(2) Capture Lab, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shahjalal Khandaker
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gzipur, 1707, Bangladesh
| | - Mohd Lokman Ibrahim
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - G Abdulkreem-Alsultan
- Chemical and Environmental Engineering Department, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Abu Shamim Khan
- Asia Arsenic Network, Arsenic Center, Benapole Road, Krishnobati, Pulerhat, Jessore, Bangladesh
| |
Collapse
|
23
|
Hasan MN, Shenashen MA, Hasan MM, Znad H, Awual MR. Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. CHEMOSPHERE 2021; 270:128668. [PMID: 33268087 DOI: 10.1016/j.chemosphere.2020.128668] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Sustainable materials are urgently desired for treatment of radioactive cesium (Cs) contaminated water to safe-guard the public health. Apart from the synthetic ligand-based materials, the Mangrove charcoal modified adsorbent was fabricated for assessing of Cs removal from waste sample. The raw charcoal was oxidized using nitrification approach and diverse oxygen containing carboxyl, carbonyl and hydroxyl functional groups were introduced. After modification, the adsorbent characteristics were drastically changed as compared to the charcoal during the measurement of FTIR, N2 adsorption-desorption isotherms and SEM micrographs. The data clarified that charcoal modified adsorbent was exhibited high Cs transport through the inner surface of the adsorbent based on bonding ability. The adsorbent was shown comparatively slow kinetics to Cs ion; however, the adsorption capacity was high as 133.54 mg/g, which was higher than the crown ether based conjugate materials. The adsorption data were followed to the Langmuir adsorption isotherms and the monolayer coverage was possible due to the data presentation. The presence of high amount of Na and K were slightly interfered to the Cs adsorption by the charcoal modified adsorbent, however; the Na and K concentration was 350-600 folds higher than the Cs concentration. Then the proposed adsorbent was selective to Cs for the potential real radioactive Cs contaminated water. The volume reduction was established rather than desorption and reuses advantages. More than 99% volume reduction was measured by burning of Cs adsorbed adsorbent at 500 °C for ensuring the safe storage and disposal of used adsorbent. Therefore, the charcoal modified adsorbent may open the new door to treat the Cs containing wastewater.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - M A Shenashen
- Polymer and Petrochemical Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
| | - Md Munjur Hasan
- Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Hussein Znad
- Department of Chemical Engineering, Curtin University, GPO BoxU 1987, Perth, WA 6845, Australia
| | - Md Rabiul Awual
- Department of Chemical Engineering, Curtin University, GPO BoxU 1987, Perth, WA 6845, Australia; Materials Science and Research Center, Japan Atomic Energy Agency (JAEA), Hyogo 679-5148, Japan.
| |
Collapse
|
24
|
Shahat A, Kubra KT, Salman MS, Hasan MN, Hasan MM. Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Aqlan FM, Alam M, Al-Bogami AS, Saleh TS, Wani MY, Al-Farga A, Asiri AM, Karim MR, Ahmed J, Fazal M, Rahman MM. Efficient electro-chemical sensor for sensitive Cd2+detection based on novel in-situ synthesized hydrazonoyl bromide (HB). J Mol Struct 2021; 1231:129690. [DOI: 10.1016/j.molstruc.2020.129690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
|
27
|
Kubra KT, Salman MS, Hasan MN. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115468] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Kotru S, Klimuntowski M, Ridha H, Uddin Z, Askhar AA, Singh G, Howlader MMR. Electrochemical sensing: A prognostic tool in the fight against COVID-19. Trends Analyt Chem 2021; 136:116198. [PMID: 33518850 PMCID: PMC7825925 DOI: 10.1016/j.trac.2021.116198] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has devastated the world, despite all efforts in infection control and treatment/vaccine development. Hospitals are currently overcrowded, with health statuses of patients often being hard to gauge. Therefore, methods for determining infection severity need to be developed so that high-risk patients can be prioritized, resources can be efficiently distributed, and fatalities can be prevented. Electrochemical prognostic biosensing of various biomarkers may hold promise in solving these problems as they are low-cost and provide timely results. Therefore, we have reviewed the literature and extracted the most promising biomarkers along with their most favourable electrochemical sensors. The biomarkers discussed in this paper are C-reactive protein (CRP), interleukins (ILs), tumour necrosis factor alpha (TNFα), interferons (IFNs), glutamate, breath pH, lymphocytes, platelets, neutrophils and D-dimer. Metabolic syndrome is also discussed as comorbidity for COVID-19 patients, as it increases infection severity and raises chances of becoming infected. Cannabinoids, especially cannabidiol (CBD), are discussed as a potential adjunct therapy for COVID-19 as their medicinal properties may be desirable in minimizing the neurodegenerative or severe inflammatory damage caused by severe COVID-19 infection. Currently, hospitals are struggling to provide adequate care; thus, point-of-care electrochemical sensor development needs to be prioritized to provide an approximate prognosis for hospital patients. During and following the immediate aftermath of the pandemic, electrochemical sensors can also be integrated into wearable and portable devices to help patients monitor recovery while returning to their daily lives. Beyond the COVID-19 pandemic, these sensors will also prove useful for monitoring inflammation-based diseases such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Sharda Kotru
- Department of Integrated Biomedical Engineering and Health Sciences, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin Klimuntowski
- Department of Electrical and Computer Engineering, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Hashim Ridha
- School of Interdisciplinary Science, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Zakir Uddin
- School of Rehabilitation Science, McMaster University, 1400 Main St W, Hamilton, ON, L8S 1C7, Canada
| | - Ali A Askhar
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
29
|
Optical detection and recovery of Yb(III) from waste sample using novel sensor ensemble nanomaterials. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Rapid and sensitive detection of selective 1,2-diaminobenzene based on facile hydrothermally prepared doped Co3O4/Yb2O3 nanoparticles. PLoS One 2021; 16:e0246756. [PMID: 33606736 PMCID: PMC7894934 DOI: 10.1371/journal.pone.0246756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
In this approach, the performance of a newly developed sensor probe coated with low-dimensional Co3O4/Yb2O3 nanoparticles (NPs) in rapidly detecting 1,2-diaminobenzene was evaluated by an electrochemical technique. The sensor probe was fabricated by depositing a very thin layer consisting of synthesized Co3O4/Yb2O3 NPs using a 5% Nafion conducting binder onto a glassy carbon electrode (GCE). The facile hydrothermally prepared Co3O4/Yb2O3 NPs were totally characterized by conventional methods such as FTIR, UV-vis, TEM, XPS, EDS, and XRD analyses. The fabricated chemical sensor probe was found to exhibit long-term activity, stability in electrochemical response, good sensitivity (5.6962 μAμM-1cm-2), lowest detection limit (0.02±0.001 pM), and broad linear dynamic range (0.1 pM to 0.01 mM). The observed performances suggest that the newly introduced sensor could play an efficient role in detecting 1,2-diaminobenzene especially in healthcare and environmental applications on a broad scale.
Collapse
|
31
|
Li H, Gu S, Zhang Q, Song E, Kuang T, Chen F, Yu X, Chang L. Recent advances in biofluid detection with micro/nanostructured bioelectronic devices. NANOSCALE 2021; 13:3436-3453. [PMID: 33538736 DOI: 10.1039/d0nr07478k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most biofluids contain a wide variety of biochemical components that are closely related to human health. Analyzing biofluids, such as sweat and tears, may deepen our understanding in pathophysiologic conditions associated with human body, while providing a variety of useful information for the diagnosis and treatment of disorders and disease. Emerging classes of micro/nanostructured bioelectronic devices for biofluid detection represent a recent breakthrough development of critical importance in this context, including traditional biosensors (TBS) and micro/nanostructured biosensors (MNBS). Related biosensors are not restricted to flexible and wearable devices; solid devices are also involved here. This article is a timely overview of recent technical advances in this field, with an emphasis on the new insights of constituent materials, design architectures and detection methods of MNBS that support the necessary levels of biocompatibility, device functionality, and stable operation for component analysis. An additional section discusses and analyzes the existing challenges, possible solutions and future development of MNBS for detecting biofluids.
Collapse
Affiliation(s)
- Hu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China. and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shaochun Gu
- Department of Material Science and Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | - Qianmin Zhang
- Department of Material Science and Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | - Enming Song
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Tairong Kuang
- Department of Material Science and Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | - Feng Chen
- Department of Material Science and Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China. and School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
32
|
Hasan MN, Salman MS, Islam A, Znad H, Hasan MM. Sustainable composite sensor material for optical cadmium(II) monitoring and capturing from wastewater. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105800] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Hasan MM, Shenashen M, Hasan MN, Znad H, Salman MS, Awual MR. Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114587] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Kameda T, Uchida H, Kumagai S, Saito Y, Mizushina K, Itou I, Han T, Yoshioka T. Desorption of Cl− from Mg-Al layered double hydroxide intercalated with Cl− using CO2 gas and water. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Kabir MM, Mouna SSP, Akter S, Khandaker S, Didar-ul-Alam M, Bahadur NM, Mohinuzzaman M, Islam MA, Shenashen M. Tea waste based natural adsorbent for toxic pollutant removal from waste samples. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Salman MS, Znad H, Hasan MN, Hasan MM. Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Nagal V, Kumar V, Khan M, AlOmar SY, Tripathy N, Singh K, Khosla A, Ahmad N, Hafiz AK, Ahmad R. A highly sensitive uric acid biosensor based on vertically arranged ZnO nanorods on a ZnO nanoparticle-seeded electrode. NEW J CHEM 2021. [DOI: 10.1039/d1nj03744g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vertically-arranged ZnO nanorods grown on a ZnO nanoparticle-seeded FTO electrode using a hydrothermal method for highly sensitive uric acid biosensor fabrication.
Collapse
Affiliation(s)
- Vandana Nagal
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Virendra Kumar
- Nanotechnology Lab, School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi-110067, India
| | - Marya Khan
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Suliman Yousef AlOmar
- Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Nirmalya Tripathy
- Departments of Pharmacy, Oregon State University, Corvallis, OR-97331, USA
| | - Kedar Singh
- Nanotechnology Lab, School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi-110067, India
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | | | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
38
|
Rahman MM, Alam MM, Asiri AM, Opo FADM. An Electrochemical Approach for the Selective Detection of Cancer Metabolic Creatine Biomarker with Porous Nano-Formulated CMNO Materials Decorated Glassy Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7060. [PMID: 33321693 PMCID: PMC7763360 DOI: 10.3390/s20247060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
The facile wet-chemical technique was used to prepare the low-dimensional nano-formulated porous mixed metal oxide nanomaterials (CuO.Mn2O3.NiO; CMNO NMs) in an alkaline medium at low temperature. Detailed structural, morphological, crystalline, and functional characterization of CMNO NMs were performed by X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDS) analyses. An efficient and selective creatine (CA) sensor probe was fabricated by using CMNO NMs decorated onto glassy carbon electrode (GCE) as CMNO NMs/GCE by using Nafion adhesive (5% suspension in ethanol). The relation of current versus the concentration of CA was plotted to draw a calibration curve of the CMNO NMs/GCE sensor probe, which was found to have a very linear value (r2 = 0.9995) over a large dynamic range (LDR: 0.1 nM~0.1 mM) for selective CA detection. The slope of LDR by considering the active surface area of GCE (0.0316 cm2) was applied to estimate the sensor sensitivity (14.6308 µAµM-1 cm-2). Moreover, the detection limit (21.63 ± 0.05 pM) of CMNO MNs modified GCE was calculated from the signal/noise (S/N) ratio at 3. As a CA sensor probe, it exhibited long-term stability, good reproducibility, and fast response time in the detection of CA by electrochemical approach. Therefore, this research technique is introduced as a promising platform to develop an efficient sensor probe for cancer metabolic biomarker by using nano-formulated mixed metal oxides for biochemical as well as biomedical research for the safety of health care fields.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Md. M. Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh;
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Firoz. A. D. M. Opo
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Chosun 61452, Korea;
- Phytochemistry Research Laboratory, Department of Pharmacy, University of Asia Pacific, Dhaka 1000, Bangladesh
| |
Collapse
|
39
|
Kameda T, Horikoshi K, Kumagai S, Saito Y, Yoshioka T. Adsorption of urea, creatinine, and uric acid from three solution types using spherical activated carbon and its recyclability. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Musarraf Hussain M, Asiri AM, Rahman MM. Non-enzymatic simultaneous detection of acetylcholine and ascorbic acid using ZnO·CuO nanoleaves: Real sample analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Preparation and evaluation of composite hybrid nanomaterials for rare-earth elements separation and recovery. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117515] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Rahman MM, Adeosun WA, Asiri AM. Fabrication of selective and sensitive chemical sensor development based on flower-flake La2ZnO4 nanocomposite for effective non-enzymatic sensing of hydrogen peroxide by electrochemical method. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
|
44
|
Non-enzymatic electrochemical sensor to detect γ-aminobutyric acid with ligand-based on graphene oxide modified gold electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Rahman MM, Alam MM, Asiri AM, Opo FADM. Fabrication of selective and sensitive chemical sensor probe based on ternary nano-formulated CuO/MnO 2/Gd 2O 3 spikes by hydrothermal approach. Sci Rep 2020; 10:20248. [PMID: 33219254 PMCID: PMC7679370 DOI: 10.1038/s41598-020-76662-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/01/2020] [Indexed: 01/28/2023] Open
Abstract
In this approach, thin spikes (NSs) of ternary nano-formulated mixed CuO/MnO2/Gd2O3 were synthesized by the hydrothermal approach for efficient detection of 3-methoxyphenyl hydrazine (3-MPHyd) chemical from various environmental samples. The NSs were systematically characterized by using XPS, EDS, TEM, FTIR, UV/vis, and XRD. The fabricated NSs onto the glassy carbon electrode (GCE) was successfully applied for the selective and sensitive detection of 3-MPHyd in the phosphate buffer system (PBS), which displayed the highest sensitivity, good selectivity with ultra-trace detection limit, high stability, good reproducibility, and quick response time. The real environmental samples were tested for validation from stand point of the ternary doped nanomaterials for sensing in the practical applications using by electrochemical method.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - M M Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Firoz A D M Opo
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Chosun, South Korea.,Phytochemistry Research Laboratory, Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| |
Collapse
|
46
|
Poolakkandy RR, Menamparambath MM. Transition metal oxide based non‐enzymatic electrochemical sensors: An arising approach for the meticulous detection of neurotransmitter biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
47
|
Chowdhury MF, Khandaker S, Sarker F, Islam A, Rahman MT, Awual MR. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114061] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Hu FX, Hu T, Chen S, Wang D, Rao Q, Liu Y, Dai F, Guo C, Yang HB, Li CM. Single-Atom Cobalt-Based Electrochemical Biomimetic Uric Acid Sensor with Wide Linear Range and Ultralow Detection Limit. NANO-MICRO LETTERS 2020; 13:7. [PMID: 34138193 PMCID: PMC8187548 DOI: 10.1007/s40820-020-00536-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/13/2020] [Indexed: 05/17/2023]
Abstract
Uric acid (UA) detection is essential in diagnosis of arthritis, preeclampsia, renal disorder, and cardiovascular diseases, but it is very challenging to realize the required wide detection range and low detection limit. We present here a single-atom catalyst consisting of Co(II) atoms coordinated by an average of 3.4 N atoms on an N-doped graphene matrix (A-Co-NG) to build an electrochemical biomimetic sensor for UA detection. The A-Co-NG sensor achieves a wide detection range over 0.4-41,950 μM and an extremely low detection limit of 33.3 ± 0.024 nM, which are much better than previously reported sensors based on various nanostructured materials. Besides, the A-Co-NG sensor also demonstrates its accurate serum diagnosis for UA for its practical application. Combination of experimental and theoretical calculation discovers that the catalytic process of the A-Co-NG toward UA starts from the oxidation of Co species to form a Co3+-OH-UA*, followed by the generation of Co3+-OH + *UA_H, eventually leading to N-H bond dissociation for the formation of oxidized UA molecule and reduction of oxidized Co3+ to Co2+ for the regenerated A-Co-NG. This work provides a promising material to realize UA detection with wide detection range and low detection limit to meet the practical diagnosis requirements, and the proposed sensing mechanism sheds light on fundamental insights for guiding exploration of other biosensing processes.
Collapse
Affiliation(s)
- Fang Xin Hu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Tao Hu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Shihong Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Dongping Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Qianghai Rao
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Yuhang Liu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chunxian Guo
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Hong Bin Yang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Chang Ming Li
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
- Institute for Advanced Cross-field Science and College of Life Science, Qingdao University, Qingdao, 200671, People's Republic of China.
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
49
|
Hayat K, Munawar A, Zulfiqar A, Akhtar MH, Ahmad HB, Shafiq Z, Akram M, Saleemi AS, Akhtar N. CuO Hollow Cubic Caves Wrapped with Biogenic N-Rich Graphitic C for Simultaneous Monitoring of Uric Acid and Xanthine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47320-47329. [PMID: 33023289 DOI: 10.1021/acsami.0c15243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we synthesized hollow cubic caves of CuO (HC) and wrapped it with N-rich graphitic C (NC), derived from a novel biogenic mixture composed of dopamine (DA) and purine. The synthesized NC wrapped HC (NC@HC) sensor shows enhanced electrocatalytic efficacy compared to unwrapped CuO with shapes including HC, sponge (SP), cabbage (CB), and solid icy cubes (SC). The shape and composition of synthesized materials were confirmed through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), whereas interfacial surface energy was calculated through contact angle measurement. The designed NC@HC sensor shows a remarkable response toward the simultaneous detection of uric acid (UA) and xanthine (Xn) with detection limits of 0.017 ± 0.001 (S/N of 3) and 0.004 ± 0.001 μM (S/N of 3), respectively. In addition, this platform was successfully applied to monitor UA from the gout patient serum. To the best of our knowledge, this is the first report on using such novel NC@HC materials for the simultaneous monitoring of UA and Xn.
Collapse
Affiliation(s)
- Khizer Hayat
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Aqsa Munawar
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Anam Zulfiqar
- Department of Biochemistry, Bahauddin Zakariya University, (BZU), Multan 60800, Pakistan
| | - Mahmood Hassan Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hafiz Badaruddin Ahmad
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Muhammad Akram
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Awais Siddique Saleemi
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060 Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
50
|
Zeynaloo E, Yang YP, Dikici E, Landgraf R, Bachas LG, Daunert S. Design of a mediator-free, non-enzymatic electrochemical biosensor for glutamate detection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102305. [PMID: 32992017 DOI: 10.1016/j.nano.2020.102305] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
A mediator-free, non-enzymatic electrochemical biosensor was constructed by covalent immobilization of a genetically engineered periplasmic glutamate binding protein onto gold nanoparticle-modified, screen-printed carbon electrodes (GluBP/AuNP/SPCE) for the purpose of direct measurement of glutamate levels. Glutamate serves as the predominant excitatory neurotransmitter in the central nervous system. As high levels of glutamate are an indicator of many neurologic disorders, there is a need for advancements in glutamate detection technologies. The biosensor was evaluated for glutamate detection by cyclic voltammetry. Binding of glutamate to the immobilized glutamate binding protein results in a conformational change of the latter that alters the microenvironment on the surface of the sensor, which is manifested as a change in signal. Dose-response plots correlating the electrochemical signal to glutamate concentration revealed a detection limit of 0.15 μM with a linear range of 0.1-0.8 μM. Selectivity studies confirmed a strong preferential response of the biosensor for glutamate against common interfering compounds.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Department of Chemistry, University of Miami, Miami, Florida, United States
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States; University of Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, United States.
| |
Collapse
|