1
|
Liang C, Tan S, Shao L, Xue X, Liu J, Liu N, Zhang W, Shi Q. Sensitive Current Sensor Based on a Lanthanide Framework with Lewis Basic Bipyridyl Sites for Cu 2+ Detection. Inorg Chem 2023. [PMID: 37296395 DOI: 10.1021/acs.inorgchem.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new Yb-based three-dimensional metal-organic framework with free Lewis basic sites, [Yb2(ddbpdc)3(CH3OH)2] (referred to as ACBP-6), from YbCl3 and (6R,8R)-6,8-dimethyl-7,8-dihydro-6H-[1,5]dioxonino[7,6-b:8,9-b']dipyridine-3,11-dicarboxylic acid (H2ddbpdc) was synthesized by a conventional solvothermal method. Two Yb3+ are connected by three carboxyl groups to form the [Yb2(CO2)5] binuclear unit, which is further bridged by two carboxyl moieties to produce a tetranuclear secondary building unit. With further ligation of the ligand ddbpdc2-, a 3-D MOF with helical channels is constructed. In the MOF, Yb3+ only coordinates with O atoms, leaving the bipyridyl N atoms of ddbpdc2- unoccupied. The unsaturated Lewis basic sites make this framework possible to coordinate with other metal ions. After growing the ACBP-6 in situ into a glass micropipette, a novel current sensor is formed. This sensor shows high selectivity and a high signal-to-noise ratio toward Cu2+ detection with a detection limit of 1 μM, due to the stronger coordination ability between the Cu2+ and the bipyridyl N atoms.
Collapse
Affiliation(s)
- Chenglong Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Shiyi Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Lixiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xinxin Xue
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Jiahao Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Weibing Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| |
Collapse
|
2
|
Gil Y, Gimeno-Muñoz R, Santana RCD, Aliaga-Alcalde N, Fuentealba P, Aravena D, González-Campo A, Spodine E. Luminescence of Macrocyclic Mononuclear Dy III Complexes and Their Immobilization on Functionalized Silicon-Based Surfaces. Inorg Chem 2022; 61:16347-16355. [PMID: 36198146 DOI: 10.1021/acs.inorgchem.2c02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two mononuclear DyIII complexes, [Dy(L1)(NCS)3] (Dy-EDA) and [Dy(L2)(NCS)3] (Dy-DAP), where Ln (n = 1-2) corresponds to a macrocyclic ligand derived from 2,6-pyridinedicarboxaldehyde and ethylenediamine (L1) and 1,3-diaminepropane (L2) were immobilized on functionalized silicon-based surfaces. This was achieved by the microcontact printing (μCP) technique, generating patterns on a functionalized surface via covalent bond formation through the auxiliary -NCS ligands present in the macrocyclic complex species. With this strategy, it was possible to control the position of the immobilized molecules on the surface. Water contact angle measurements, X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectra (IRRAS), and atomic force microscopy (AFM) confirmed that the surfaces were successfully functionalized. Furthermore, the optical properties in a broad temperature range were investigated for the as-prepared compounds. At room temperature, Dy-EDA was shown to emit in the deep blue region (Commission Internationald'Eclairage (CIE): (0.175, 0.128)), while Dy-DAP in the white region (CIE: (0.252, 0.312)). The different CIE values were due to the contribution of the strong emission of the ligand in the case of Dy-EDA. Besides, surface photoluminescence measurements showed that the immobilized complexes retained their bulk emissive properties.
Collapse
Affiliation(s)
- Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 8380544, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Santiago 9170022, Chile
| | - Raquel Gimeno-Muñoz
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ricardo Costa de Santana
- Instituto de Física, Universidade Federal de Goiás, Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Núria Aliaga-Alcalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain.,ICREA─Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Pablo Fuentealba
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 8380544, Chile
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Arántzazu González-Campo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Evgenia Spodine
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 8380544, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Santiago 9170022, Chile
| |
Collapse
|
3
|
Surbella RG, Reilly DD, Sinnwell MA, McNamara BK, Sweet LE, Schwantes JM, Thallapally PK. Multifunctional Two-Dimensional Metal-Organic Frameworks for Radionuclide Sequestration and Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45696-45707. [PMID: 34542263 DOI: 10.1021/acsami.1c11018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two lanthanide-containing porous coordination polymers, [Ln2(bpdc)6(phen)2]·nH2O (1) and [Ln2(bpdc)6(terpy)2]·3H2O (2) (Ln = Pr, Nd, or Sm-Dy; bpdc: 2,2'-bipyridine-5,5'-dicarboxylic acid; phen: 1,10-phenanthroline; and terpy: 2,2':6',2″-terpyridine), have been hydrothermally synthesized and structurally characterized by powder and single-crystal X-ray diffraction. Crystallographic analyses reveal that compounds 1 and 2 feature Ln3+-containing dimeric nodes that form a porous two-dimensional (2D) and nonporous three-dimensional (3D) framework, respectively. Each material is stable in aqueous media between pH 3 and 10 and exhibits modest thermal stability up to ∼400 °C. Notably, a portion of the phen and bpdc ligands in 1 can be removed thermally, without compromising the crystal structure, causing the surface area and pore volume to increase. The optical properties of 1 and 2 with Gd3+, Sm3+, Tb3+, and Eu3+ are explored in the solid state using absorbance, fluorescence, and lifetime spectroscopies. The analyses reveal a complex blend of metal and ligand emission in the materials containing Sm3+ and Tb3+, while those featuring Eu3+ are dominated by intense metal-based emission. Compound 1 with Eu3+ shows promise for the capture and detection of the uranyl cation (UO2)2+ from aqueous media. In short, uranyl capture is observed at pH 4, and the adsorption thereof is detectable via vibrational and fluorescence spectroscopies and colorimetrically as the off-white color of 1 turns yellow with uptake. Finally, both 1 and 2 with Eu3+ produce bright red emission upon irradiation with Cu Kα X-ray radiation (8.04 keV) and are candidate materials for applications in solid-state scintillation.
Collapse
Affiliation(s)
- Robert G Surbella
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dallas D Reilly
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Michael A Sinnwell
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bruce K McNamara
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lucas E Sweet
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jon M Schwantes
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | |
Collapse
|
4
|
Hou L, Song Y, Lang F, Wang Z, Wang L. Fluorometric determination of Fe3+ and polychlorinated benzenes based on Tb3+-pyromellitic acid coordination polymer. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Chang YX, Gao N, Wang MY, Wang WT, Fan ZW, Ren DD, Wu ZL, Wang WM. Two phenoxo-O bridged dinuclear Dy(III) complexes exhibiting distinct slow magnetic relaxation induced by different β-diketonate ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Zapata-Lizama M, Hermosilla-Ibáñez P, Venegas-Yazigi D, Mínguez Espallargas G, Queiroz Maia LJ, Gasparotto G, De Santana RC, Cañón-Mancisidor W. A systematic study of the optical properties of mononuclear hybrid organo–inorganic lanthanoid complexes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00232a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mononuclear organic–inorganic hybrid lanthanoid complexes show that the combination of both types of ligands improves the optical response compared to the inorganic analogue, thus having potential optical applications due to their thermal response.
Collapse
Affiliation(s)
- Matias Zapata-Lizama
- Facultad de Química y Biología
- Depto. de Química de los Materiales
- Universidad de Santiago de Chile
- USACH
- Chile
| | - Patricio Hermosilla-Ibáñez
- Facultad de Química y Biología
- Depto. de Química de los Materiales
- Universidad de Santiago de Chile
- USACH
- Chile
| | - Diego Venegas-Yazigi
- Facultad de Química y Biología
- Depto. de Química de los Materiales
- Universidad de Santiago de Chile
- USACH
- Chile
| | | | | | | | | | - Walter Cañón-Mancisidor
- Facultad de Química y Biología
- Depto. de Química de los Materiales
- Universidad de Santiago de Chile
- USACH
- Chile
| |
Collapse
|
7
|
Manzur J, de Santana RC, Maia LJQ, Vega A, Spodine E. Tuning White Light Emission in Dinuclear Phenoxo Bridged Dy III Complexes. Inorg Chem 2019; 58:10012-10018. [PMID: 31318542 DOI: 10.1021/acs.inorgchem.9b01153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new series of dinuclear dysprosium(III) complexes, [Dy2(LCH3)2(NO3)2(MeOH)2] (I), [Dy2(LCH3)2(NO3)2(DMF)2]·2DMF (II), [Dy2(LCl)2(NO3)2(DMF)2]·2DMF (III), and [Dy2(LCH3O)2(NO3)2(DMF)2] (IV), with 2,2'-[[(2-pyridinylmethyl)imino]di(methylene)]bis(4-R-phenol), where R = CH3, Cl, and CH3O, were investigated as potential white light emitters. All octacoordinated dysprosium(III) are phenoxo-bridged species and have a similar coordination environment. Nevertheless, I has a MeOH ligand molecule, while for II-IV a DMF ligand replaces that of MeOH. The nature of the coordinated solvent molecule plays an important role in the behavior of the thermal dependence of the Y/B (yellow/blue) emission ratio of the DyIII complexes (Y: 4F9/2 → 6H13/2, yellow and B: 4F9/2 → 6H15/2, blue transitions),, since for I the variation of this ratio is significant, while for the other DyIII complexes with DMF as ligand the ratio remains constant within experimental error. At room temperature the CIE (Commission International d'Eclairage) color coordinates for the DyIII complexes, I (0.286, 0.317), III (0.302, 0.324), and IV (0.322, 0.348) are close to the NTSC (National Television System(s) Committee) standard value for white color. Varying the temperature from 16 to 300 K the CIE coordinates for I change from the blueish to white region of the chromaticity diagram, while those of II present an inverse thermal dependence as compared to I. The CCT (Correlated Color Temperature) values at room temperature for I (8384 K), II (17235 K), and IV (5948 K) permit us to consider these complexes as candidates for white cold light emitters, the high value of II being uncommon. For I and II the CCT values vary strongly with temperature, showing a decrease with increasing temperature for I, and an increase with increasing temperature for II, thus making evident the influence on the photophysical properties of the nature of the coordinated solvent molecule in these complexes.
Collapse
Affiliation(s)
- Jorge Manzur
- Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Santiago , Chile
| | | | | | - Andres Vega
- Departamento de Ciencias Químicas , Universidad Andrés Bello , Santiago , Chile.,Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA , Santiago , Chile
| | - Evgenia Spodine
- Facultad de Ciencias Químicas y Farmacéuticas , Universidad de Chile , Santiago , Chile.,Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA , Santiago , Chile
| |
Collapse
|
8
|
Synthesis and characterization of a holmium 2,2′-bipyridine-5,5′-dicarboxylate MOF: Towards the construction of a suitable holmium carrier. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Errulat D, Gabidullin B, Murugesu M, Hemmer E. Probing Optical Anisotropy and Polymorph-Dependent Photoluminescence in [Ln 2 ] Complexes by Hyperspectral Imaging on Single Crystals. Chemistry 2018; 24:10146-10155. [PMID: 29665186 DOI: 10.1002/chem.201801224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/15/2018] [Indexed: 01/24/2023]
Abstract
Two homodinuclear and one heterodinuclear lanthanide (Ln)-based complexes of the general formula [Ln2 (bpm)(tfaa)6 ] (Ln=Eu (1), Tb (2), Eu-Tb (3), bpm=2,2'-bipyrimidine, tfaa- =1,1,1-trifluoroacetylacetonate) were synthesized and characterized by single-crystal photoluminescence spectroscopy and hyperspectral imaging. Complexes 1 and 2 crystallize in two polymorphic structures, while three polymorphs were isolated for 3, namely having needle-, plate-, and block-like morphologies. Single-crystal photoluminescence spectroscopy and imaging on Eu3+ -containing 1 and 3 revealed polymorph-dependent J-splitting of the hypersensitive 5 D0 →7 F2 Eu3+ transition as well as electric-to-magnetic dipole emission intensity ratios. According to these observations, the lowest symmetry chemical environment was attributed to the Eu3+ ions present in the needle-like polymorph, also in agreement with single-crystal X-ray diffraction analysis. More importantly, hyperspectral imaging on all three single-crystal polymorphs of 3 exhibits optical anisotropy with photoluminescence enhancement at specific crystallographic faces. This behavior was ascribed to the distinct molecular packing of the Ln-Ln dimers in each polymorphic crystal as well as to face-specific local symmetry of the Eu3+ centers. Overall, opto-structural relationships of three Ln-Ln dimers and their single-crystal polymorphs were established as a particularly promising avenue for control of photoluminescence by chemical crystal engineering.
Collapse
Affiliation(s)
- Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|