1
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
2
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Joseph R. Selective Detection of Fe 3+, F -, and Cysteine by a Novel Triazole-Linked Decaamine Derivative of Pillar[5]arene and Its Metal Ion Complex in Water. ACS OMEGA 2020; 5:6215-6220. [PMID: 32226907 PMCID: PMC7098014 DOI: 10.1021/acsomega.0c00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Appropriately functionalized pillar[n]arenes are elegant supramolecular hosts for ion and molecule sensing. A water-soluble decaamine derivative of pillar[5]arene (APA) bearing triazole and amide moieties is synthesized. The ion and molecular recognition properties of APA are studied by fluorescence, UV-visible, and 1H nuclear magnetic resonance (NMR) spectroscopy. The APA selectively detects Fe3+ among 11 studied ions, which are important in several biological processes. Moreover, the in situ prepared Fe3+ complex of APA (FeAPA) exhibits the highest responsiveness toward F- (∼12-fold) among 11 anions and cysteine (∼120-fold) among the 20 naturally occurring amino acids by a fluorescence turn-on mechanism.
Collapse
|
5
|
Singh R, Das G. A Luminescent Probe for Ratiometric Optical Detection of Hg II and Turn-On Fluorescent Sensing of Cu II. Chem Asian J 2019; 14:4625-4630. [PMID: 31237099 DOI: 10.1002/asia.201900683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Indexed: 01/04/2023]
Abstract
Luminescent detection of heavy metals continues to be of growing importance considering their increasing inseparable roles in modern day lifestyle. To this end, we report a simple yet interesting thiourea derivative that results in detection of CuII in a turn-on fashion via a chemodosimetric redox reaction leading to oxidative cyclization of the chemosensor molecule. Elaborate studies with regard to the sensing process have been performed along with the proposal of a plausible cyclization mechanism of the molecule. Furthermore, the probe optically detects HgII , yet another heavy metal of prime importance, discernable even to the naked eye. The occurrence of a coordination complex has been proved by UV/Visible spectroscopic experiments as well as ESI-mass spectrometry.
Collapse
Affiliation(s)
- Rupinder Singh
- Department of Chemistry, Indian Institute of Technology Guwahat, Guwahati, 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahat, Guwahati, 781039, India
| |
Collapse
|
6
|
Shurpik DN, Mostovaya OA, Sevastyanov DA, Lenina OA, Sapunova AS, Voloshina AD, Petrov KA, Kovyazina IV, Cragg PJ, Stoikov II. Supramolecular neuromuscular blocker inhibition by a pillar[5]arene through aqueous inclusion of rocuronium bromide. Org Biomol Chem 2019; 17:9951-9959. [PMID: 31729508 DOI: 10.1039/c9ob02215e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A water-soluble pillar[5]arene, decafunctionalized with thioether and carboxylate fragments, was synthesized as a structural analogue of Sugammadex. Its ability to restore the contraction of the diaphragm muscle by encapsulating the muscle relaxant rocuronium bromide was demonstrated. Using UV-vis, NMR and fluorescence spectroscopy, it was shown that the muscle relaxant is associated with the pillar[5]arene with an association constant of 4500 M-1 and a stoichiometry of 1 : 1. The structure of the inclusion complex of the pillar[5]arene with rocuronium bromide was additionally investigated by quantum chemical methods.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fang G, Wang H, Bian Z, Guo M, Wu Z, Yao Q. A novel boronic acid-based fluorescent sensor for selectively recognizing Fe 3+ ion in real time. RSC Adv 2019; 9:20306-20313. [PMID: 35514712 PMCID: PMC9065501 DOI: 10.1039/c9ra03978c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/23/2019] [Indexed: 11/21/2022] Open
Abstract
Boronic acid provides faster fluorescence response to Fe3+ compared to other reported sensors, which is critical for continuous dynamic detection. Herein, we reported a novel boronic acid-based sensor 4 that could recognize Fe3+ ion in real time. After 10 equiv. of Fe3+ ion (1 mM) was added, the fluorescence of sensor 4 was immediately quenched by 96%. While other ions, including Ba2+, Ca2+, Cr2+, Cd2+, Co2+, Cs2+, Cu2+, Fe2+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+ or Zn2+, respectively, did not change the fluorescence significantly. Further tests indicated that the high selectively sensing Fe3+ ion benefits from the two boronic acid functionalities in the structure. Moreover, interference experiments showed this sensor has an excellent anti-interference ability. In addition, we performed binding activity test in rabbit plasma and other real samples for practical applications, obtaining similar results. And the thin layer loading sensor 4 was also successfully applied to recognize Fe3+ ion among various ions. Therefore, 4 may serve as a potential sensor for continuous monitoring and detecting Fe3+ ion in real time.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Min Guo
- Shandong Leather Industrial Research Institute Jinan 250021 Shandong China
| | - Zhongyu Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Qingqiang Yao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
8
|
Gong X, Zhang H, Jiang N, Wang L, Wang G. Oxadiazole-based ‘on-off’ fluorescence chemosensor for rapid recognition and detection of Fe2+ and Fe3+ in aqueous solution and in living cells. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Fang G, Bian Z, Liu D, Wu G, Wang H, Wu Z, Yao Q. Water-soluble diboronic acid-based fluorescent sensors recognizing d-sorbitol. NEW J CHEM 2019. [DOI: 10.1039/c9nj02636c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-soluble diboronic acid sensor 15c exhibited higher selectivity for d-sorbitol than monoboronic acid sensor 1 and hydroxy derivative 2. And it could be applied for d-sorbitol sensing and analysis in real samples.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Zhancun Bian
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Daili Liu
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Guiying Wu
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Hao Wang
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Zhongyu Wu
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Qingqiang Yao
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| |
Collapse
|
10
|
Zhang YM, Chen XP, Liang GY, Zhong KP, Yao H, Wei TB, Lin Q. A water-soluble fluorescent chemosensor based on Asp functionalized naphthalimide for successive detection Fe3+ and H2PO4−. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The selective recognition of target ions in water is very important and the development of novel water-soluble chemosensor is still an intriguing challenge. Herein, a novel water-soluble fluorescent sensor based on aspartic acid (Asp) functionalized 1,8-naphthalimide derivative (Asp-NI) has been designed and synthesized. The sensor Asp-NI could dissolve in water and successively detect Fe3+ and H2PO4− in water solution with high selectivity and sensitivity. The detection limits are 4.97 × 10−7 mol/L for Fe3+ and 5.27 × 10−6 mol/L for H2PO4−. Other coexistent competitive metal ions (Hg2+, Ag+, Ca2+, Cu2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cr3+, and Mg2+) showed no interference in the Fe3+ detection process. The sensor Asp-NI could act as a Fe3+ and H2PO4− controlled “On–Off–On” fluorescent switch. More interestingly, the Fe3+ induced fluorescence quenching process could be totally reversed by the addition of H2PO4−, this “On–Off–On” switching process could be repeated several times with little fluorescence loss. Notably, the actual usage of sensor Asp-NI was further demonstrated by test kits.
Collapse
Affiliation(s)
- You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Xiao-Peng Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Guo-Yan Liang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Kai-Peng Zhong
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
11
|
Affiliation(s)
- Fang Guo
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yan Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Bohan Xi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Guowang Diao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Lin Q, Liu L, Zheng F, Mao PP, Liu J, Zhang YM, Yao H, Wei TB. A water-soluble pillar[5]arene-based chemosensor for highly selective and sensitive fluorescence detection of l-methionine. RSC Adv 2017. [DOI: 10.1039/c7ra05750d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cationic pillar[5]arene (AWP5) was employed as a water-soluble chemosensor for recognition of amino acids. AWP5 could fluorescently detect l-methionine in water with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Lu Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Feng Zheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Peng-Peng Mao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Juan Liu
- College of Chemical Engineering
- Northwest University for Nationalities
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
13
|
Chen JF, Cheng XB, Li H, Han BB, Lin Q, Zhang YM, Yao H, Wei TB. A novel iodination-triggered competitive coordination mechanism: indirect detection of Hg2+and I−using a simple copillar[5]arene-based fluorometric sensor. NEW J CHEM 2017. [DOI: 10.1039/c7nj01856h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proposed mechanism for the detection of Hg2+and I−byDBP5.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Bin Cheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hui Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Bing-Bing Han
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
14
|
Chen JF, Cheng XB, Li H, Lin Q, Yao H, Zhang YM, Wei TB. A copillar[5]arene-based fluorescence “on–off–on” sensor is applied in sequential recognition of an iron cation and a fluoride anion. NEW J CHEM 2017. [DOI: 10.1039/c6nj03380f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copillar[5]arene-based [c2]daisy-chain dimer is applied in sequential detection of Fe3+ and F− through a competitive complexation reaction.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Xiao-Bin Cheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Hui Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
15
|
Wei TB, Chen JF, Cheng XB, Li H, Han BB, Yao H, Zhang YM, Lin Q. Construction of stimuli-responsive supramolecular gel via bispillar[5]arene-based multiple interactions. Polym Chem 2017. [DOI: 10.1039/c7py00335h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A linear supramolecular polymer has been constructed from host–guest recognition. Furthermore, the linear supramolecular polymer could self-assemble to form a supramolecular gel at high concentration, which exhibited external stimuli-responsiveness.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Bin Cheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hui Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Bing-Bing Han
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
16
|
Chen JF, Lin Q, Zhang YM, Yao H, Wei TB. Pillararene-based fluorescent chemosensors: recent advances and perspectives. Chem Commun (Camb) 2017; 53:13296-13311. [DOI: 10.1039/c7cc08365c] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This feature article summarizes recent research in the pillararene-based fluorescent chemosensor field in terms of ion sensing, small molecule recognition, biomolecule detection, fluorescent supramolecular aggregates, and biomedical imaging.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
17
|
Dhinakaran MK, Gong W, Yin Y, Wajahat A, Kuang X, Wang L, Ning G. Configuration-independent AIE-active supramolecular polymers of cyanostilbene through the photo-stable host–guest interaction of pillar[5]arene. Polym Chem 2017. [DOI: 10.1039/c7py00845g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a cyanostilbene system with retained AIE activity at Z and E isomeric state through host–guest of pillar[5]arene.
Collapse
Affiliation(s)
- Manivannan Kalavathi Dhinakaran
- A State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 610023
- P.R. China
| | - Weitao Gong
- A State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 610023
- P.R. China
| | - Yue Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Ali Wajahat
- A State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 610023
- P.R. China
| | - Xiaojun Kuang
- A State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 610023
- P.R. China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Guiling Ning
- A State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 610023
- P.R. China
| |
Collapse
|
18
|
Wei TB, Chen JF, Cheng XB, Li H, Han BB, Zhang YM, Yao H, Lin Q. A novel functionalized pillar[5]arene-based selective amino acid sensor forl-tryptophan. Org Chem Front 2017. [DOI: 10.1039/c6qo00569a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The sensing mechanism of the sensorBTAP5forl-Trp.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Xiao-Bin Cheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Hui Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Bing-Bing Han
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
19
|
Chen JF, Han BB, Ma JF, Liu X, Yang QY, Lin Q, Yao H, Zhang YM, Wei TB. Pillar[5]arene-based fluorescent polymer for selective detection and removal of mercury ions. RSC Adv 2017. [DOI: 10.1039/c7ra10326c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel pillar[5]arene-based fluorescent polymer has been synthesized, and it is used for fluorescence detection and removal of the toxic mercury ions.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Bing-Bing Han
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jin-Feng Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xi Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qing-Yu Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
20
|
Lin Q, Zheng F, Liu L, Mao PP, Zhang YM, Yao H, Wei TB. Efficient sensing of fluoride ions in water using a novel water soluble self-assembled supramolecular sensor based on pillar[5]arene. RSC Adv 2016. [DOI: 10.1039/c6ra23878e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By rationally introducing competitive coordination, the supramolecular sensors could reversibly sense Fe3+ and F− in water with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Feng Zheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Lu Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Peng-Peng Mao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|