1
|
Sun NN, Tinnefeld P, Li GL, He ZK, Xu QF. Aptamer melting biosensors for thousands of signaling and regenerating cycles. Biosens Bioelectron 2025; 271:116998. [PMID: 39615223 DOI: 10.1016/j.bios.2024.116998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025]
Abstract
Due to their recognition abilities and inherent regenerability, aptamers have great potential in biosensing applications. However, effective signal transduction and regeneration strategies are still required. Herein, we develop a melting-based aptamer sensing strategy capable of homogeneous signaling with over 1000 regenerating cycles without significant deterioration of performance. Such melting aptasensors employ melting temperature changes upon target binding as signal readout, and the high temperature involved in the melting process regenerates the aptamers for reuse. This reversible biosensor is reagentless, affordable, and maintenance-free, thus accelerating the real-world applications of aptasensors in continuous monitoring, wearable sensors, unattended operation, and resource-limited areas.
Collapse
Affiliation(s)
- Na-Na Sun
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany
| | - Guo-Liang Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhi-Ke He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qin-Feng Xu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
2
|
Coffi Dit Gleize K, Tran CTH, Waterhouse A, Bilek MMM, Wickham SFJ. Plasma Activation of Microplates Optimized for One-Step Reagent-Free Immobilization of DNA and Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:343-356. [PMID: 36550613 DOI: 10.1021/acs.langmuir.2c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Activated microplates are widely used in biological assays and cell culture to immobilize biomolecules, either through passive physical adsorption or covalent cross-linking. Covalent attachment gives greater stability in complex biological mixtures. However, current multistep chemical activation methods add complexity and cost, require specific functional groups, and can introduce cytotoxic chemicals that affect downstream cellular applications. Here, we show a method for one-step linker-free activation of microplates by energetic ions from plasma for covalent immobilization of DNA and protein. Two types of energetic ion plasma treatment were shown to be effective: plasma immersion ion implantation (PIII) and plasma-activated coating (PAC). This is the first time that PIII and PAC have been reported in microwell plates with nonflat geometry. We confirm that the plasma treatment generates radical-activated surfaces at the bottom of wells despite potential shadowing from the walls. Comprehensive surface characterization studies were used to compare the PIII and PAC microplate surface composition, wettability, radical density, optical properties, stability, and biomolecule immobilization density. PAC plates were found to have more nitrogen and lower radical density and were more hydrophobic and more stable over 3 months than PIII plates. Optimal conditions were obtained for high-density DNA (PAC, 0 or 21% nitrogen, pH 3-4) and streptavidin (PAC, 21% nitrogen, pH 5-7) binding while retaining optical properties required for typical high-throughput biochemical microplate assays, such as low autofluorescence and high transparency. DNA hybridization and protein activity of immobilized molecules were confirmed. We show that PAC activation allows for high-density covalent immobilization of functional DNA and protein in a single step on both 96- and 384-well plates without specific linker chemistry. These microplates could be used in the future to bind other user-selected ligands in a wide range of applications, for example, for solid phase polymerase chain reaction and stem cell culture and differentiation.
Collapse
Affiliation(s)
| | - Clara T H Tran
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- The Heart Research Institute, The University of Sydney, Newtown 2042, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcela M M Bilek
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shelley F J Wickham
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Nguyen HL, Tran TH, Hao LT, Jeon H, Koo JM, Shin G, Hwang DS, Hwang SY, Park J, Oh DX. Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications. Carbohydr Polym 2021; 271:118421. [PMID: 34364562 DOI: 10.1016/j.carbpol.2021.118421] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Aluminum-coated polypropylene films are commonly used in food packaging because aluminum is a great gas barrier. However, recycling these films is not economically feasible. In addition, their end-of-life incineration generates harmful alumina-based particulate matter. In this study, coating layers with excellent gas-barrier properties are assembled on polypropylene films through layer-by-layer (LbL) deposition of biorenewable nanocellulose and nanochitin. The coating layers significantly reduce the transmission of oxygen and water vapors, two unfavorable gases for food packaging, through polypropylene films. The oxygen transmission rate of a 60 μm-thick, 20 LbL-coated polypropylene film decreases by approximately a hundredfold, from 1118 to 13.10 cc m-2 day-1 owing to the high crystallinity of nanocellulose and nanochitin. Its water vapor transmission rate slightly reduces from 2.43 to 2.13 g m-2 day-1. Furthermore, the coated film is highly transparent, unfavorable to bacterial adhesion and thermally recyclable, thus promising for advanced food packaging applications.
Collapse
Affiliation(s)
- Hoang-Linh Nguyen
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Thang Hong Tran
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Sung Yeon Hwang
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Tran C, Yasir M, Dutta D, Eswaramoorthy N, Suchowerska N, Willcox M, McKenzie DR. Single Step Plasma Process for Covalent Binding of Antimicrobial Peptides on Catheters To Suppress Bacterial Adhesion. ACS APPLIED BIO MATERIALS 2019; 2:5739-5748. [DOI: 10.1021/acsabm.9b00776] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Clara Tran
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- Optometry and Vision Science, Aston Optometry School, Aston University, Birmingham, U.K
| | - Nithya Eswaramoorthy
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | | | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - David R. McKenzie
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia
- VectorLab, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Tran CTH, Craggs M, Smith LM, Stanley K, Bilek MM, McKenzie DR. A plasma ion bombardment process enabling reagent-free covalent binding of multiple functional molecules onto magnetic particles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:118-124. [PMID: 30813002 DOI: 10.1016/j.msec.2018.12.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 11/18/2022]
Abstract
We report a plasma immersion ion implantation process for functionalizing polymer coated magnetic particles, converting them into a universal covalent binding platform for the simultaneous binding of multiple molecular agents without the need for specialised chemical linking groups. As an example, we demonstrate the improvement of wettability and the control of surface charge of polystyrene coated magnetic particles, enhancing biomolecule attachment density with strong covalent binding. We demonstrate the preparation of multifunctional magnetic particles where two or more types of molecule are co-immobilized. This enables a platform technology with simultaneous multiple covalent binding of molecules drawn from oligonucleotides, antibodies and enzymes suitable for targeted nanoparticle diagnostic and therapies.
Collapse
Affiliation(s)
- Clara T H Tran
- School of Physics, University of Sydney, NSW 2006, Australia.
| | | | - Lee M Smith
- AusDiagnostics Ltd., Beaconsfield, NSW 2015, Australia
| | - Keith Stanley
- AusDiagnostics Ltd., Beaconsfield, NSW 2015, Australia
| | - Marcela M Bilek
- School of Physics, University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
6
|
Plasma treatments of dressings for wound healing: a review. Biophys Rev 2017; 9:895-917. [PMID: 28971326 DOI: 10.1007/s12551-017-0327-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
This review covers the use of plasma technology relevant to the preparation of dressings for wound healing. The current state of knowledge of plasma treatments that have potential to provide enhanced functional surfaces for rapid and effective healing is summarized. Dressings that are specialized to the needs of individual cases of chronic wounds such as diabetic ulcers are a special focus. A summary of the biology of wound healing and a discussion of the various types of plasmas that are suitable for the customizing of wound dressings are given. Plasma treatment allows the surface energy and air permeability of the dressing to be controlled, to ensure optimum interaction with the wound. Plasmas also provide control over the surface chemistry and in cases where the plasma creates energetic ion bombardment, activation with long-lived radicals that can bind therapeutic molecules covalently to the surface of the dressing. Therapeutic innovations enabled by plasma treatment include the attachment of microRNA or antimicrobial peptides. Bioactive molecules that promote subsequent cell adhesion and proliferation can also be bound, leading to the recruitment of cells to the dressing that may be stem cells or patient-derived cells. The presence of a communicating cell population expressing factors promotes healing.
Collapse
|
7
|
d’Eon J, Zhang W, Chen L, Berry RM, Zhao B. Coating cellulose nanocrystals on polypropylene and its film adhesion and mechanical properties. CELLULOSE 2017; 24:1877-1888. [DOI: 10.1007/s10570-017-1222-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|