1
|
Zhao X, Jia F, Wang B, Hu Z, Han B, Mei N, Jia F, Liu Y, Yao H. Metatranscriptomics sheds light on electron transfer in anammox bacteria enhanced by the redox mediator neutral red. ENVIRONMENTAL RESEARCH 2025; 274:121288. [PMID: 40043932 DOI: 10.1016/j.envres.2025.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Enhancing the activity of key enzymes has been recognized as an effective strategy to improve anammox performance. Neutral red (NR), a potent redox-active electron carrier, has been shown to boost various enzyme activities and microbial reaction rates. However, its potential to enhance anammox performance remains underexplored. This study aimed to investigate the effects of different NR concentrations on anammox nitrogen removal efficiency and gene transcription levels. The results revealed that anammox activity increased with NR doses in the lower concentration range (0.05-0.3 g L-1). The optimal dosage at 0.1 g L-1 significantly increased specific anammox activity (SAA) by 16.73 ± 2.68% (p ≤ 0.001), compared to the control without NR addition. Moreover, the total EPS concentration increased by 16.87 ± 1.20% (p ≤ 0.01). Conversely, NR concentrations exceeding the optimal range inhibited anammox activity. Metatranscriptomic analysis showed that appropriate NR supplementation upregulated the expression of cofactor modules related to electron transfer and functional genes (hdh and hzsB) involved in anammox nitrogen removal, thereby enhancing overall performance. Moreover, the mild oxidative stress induced by low NR doses was mitigated through the upregulation of antioxidant genes. In contrast, excessive NR (0.5-1.0 g L-1) led to an accumulation of reactive oxygen species (ROS) that overwhelmed the antioxidant defense system, resulting in impaired electron transfer and reduced metabolic activity. Specifically, when the NR concentration was increased to 1.0 g L-1, SAA decreased significantly by 26.45 ± 2.55% (p ≤ 0.001). These findings indicate that appropriately controlled NR supplementation can improve anammox activity, providing a promising strategy for rapid start-up and improved nitrogen removal in practical anammox systems.
Collapse
Affiliation(s)
- Xingcheng Zhao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Bo Wang
- Department of Food Science, Aarhus University, 8200, Aarhus N, Denmark
| | - ZhiFeng Hu
- Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China
| | - Baohong Han
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Ning Mei
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Feirui Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Yawen Liu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
2
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Khanthong K, Jang H, Kadam R, Jo S, Lee J, Park J. Bioelectrochemical system for nitrogen removal: Fundamentals, current status, trends, and challenges. CHEMOSPHERE 2023; 339:139776. [PMID: 37567277 DOI: 10.1016/j.chemosphere.2023.139776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Biological nitrogen removal (BNR) is essential for the treatment of nitrogen-containing wastewater. However, the requirement for aeration and the addition of external carbon sources, resulting in greenhouse gas emissions and additional costs, are disadvantages of the traditional BNR process. Alternative technologies have been devised to overcome these drawbacks. Bioelectrochemical nitrogen removal (BENR) has been proposed for efficient nitrogen removal, demonstrating flexibility and versatility. BENR can be performed by combining nitrification, denitrification, anaerobic ammonium oxidation (ANAMMOX), or organic carbon oxidation. Bioelectrochemical-ANAMMOX (BE-ANAMMOX) is the most promising method for nitrogen removal, as it can directly convert NH4+ to N2 and H2 in one step when the electrode is arranged as an electron acceptor. High-value-added hydrogen can potentially be recovered with efficient nitrogen removal using this concept, maximizing the benefits of BENR. Using alternative electron acceptors, such as electrodes and metal ions, for complete total nitrogen removal is a promising technology to substitute NO2- production from NH4+ oxidation by aeration. However, the requirement of electron donors for NO3- reduction, low NH4+ removal efficiency, and low competitiveness of exoelectrogenic bacteria still remain the main obstacles. The future direction for successful BENR should aim to achieve complete anaerobic NH4+ oxidation without any electron acceptor and to maximize selectivity in H2 production. Therefore, the bioelectrochemical pathways and balances between efficient nitrogen removal and high-value-added chemical production should be further studied for carbon and energy neutralities.
Collapse
Affiliation(s)
- Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea.
| | - Heewon Jang
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Jonghwa Lee
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea.
| |
Collapse
|
4
|
Zhang B, Wang J, Huang JJ, Razaqpur AG, Han X, Fan L. Promotion of anammox process by different graphene-based materials: Roles of particle size and oxidation degree. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154816. [PMID: 35341875 DOI: 10.1016/j.scitotenv.2022.154816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (RGO) have been applied in the anaerobic ammonium oxidation (anammox) process for nitrogen removal as electron shuttles. However, there is still controversy about their efficacy. In this study, nine graphene-based materials with a gradient of three particle sizes (large (l), medium (m) and small (s) sizes) and oxidation degrees, were used to compare their effects on the anammox process efficiency. The graphene-based materials include GO and its reduced products (RGO250 and RGO800) obtained at temperatures of 250 °C and 800 °C respectively. It was observed that their enhancements on the anammox process were in the order of GO > RGO800 > RGO250. In detail, at the dose of 100 mg/L, specific anammox activities (SAA) were promoted by 6.7% (l-GO), 4.9% (l-RGO800), 11.5% (m-GO), 7.3% (m-RGO800), 13.2% (s-GO) and 8.3% (s-RGO800) compared to the control respectively; while RGO250 with the same dose inhibited the process. In addition, the enhancement of the anammox process was increasing with the decreasing size of GO and RGO800. The nitrite reductase (NIR) activity was greatly increased by up to 24.9% with the presence of GO, which might be attributed to organized and specific electron transport with oxygen functional groups. The finding of hydroxyl on RGO and increasing content of oxygen determined after reaction detected by Fourier transform infrared spectroscopy and energy dispersive spectrometer respectively, indicated the essential condition for RGO's function on transferring electrons for key enzymes in annamox bacteria. Most importantly, O/C (Oxygen/Carbon) ratios of graphene-based materials had greater effects on the promotion of the anammox process than the particle size and electrical conductivity.
Collapse
Affiliation(s)
- Beichen Zhang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jingshu Wang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| | - Abdul Ghani Razaqpur
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Liang Fan
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
5
|
Elreedy A, Ismail S, Ali M, Ni SQ, Fujii M, Elsamadony M. Unraveling the capability of graphene nanosheets and γ-Fe 2O 3 nanoparticles to stimulate anammox granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111495. [PMID: 33069150 DOI: 10.1016/j.jenvman.2020.111495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the potentials of nanomaterials to enhance anaerobic ammonium oxidation (anammox) process, in terms of nitrogen removal, microbial enrichment, and activity of key enzymes. Graphene nanosheets (GNs) and γ-Fe2O3 nanoparticles (NPs) were selected due to their catalytic functions as conductive material and electron shuttles, respectively. The obtained results revealed that the optimum dosage of GNs (10 mg/L) boosted the nitrogen removal rate (NRR) by 46 ± 3.1% compared to the control, with maximum NH4+-N and NO2--N removal of 86.5 ± 2.7% and 97.1 ± 0.5%, respectively. Moreover, hydrazine dehydrogenase (HDH) enzyme activity was augmented by 1.1-fold when using 10 mg/L GNs. The presence of GNs promoted the anammox granulation via enhancement of hydrophobic interaction of extracellular polymeric substances (EPS). Regarding the use of γ-Fe2O3 NPs, 100 mg/L dose increased NRR by 55 ± 3.8%; however, no contribution to HDH enzyme activity and a decrease in EPS compositions were observed. Given that the abiotic use of γ-Fe2O3 NPs further resulted in high adsorption efficiency (~92%), we conclude that the observed promotion due to γ-Fe2O3 NPs was mainly abiotic. Moreover, the 16S rRNA analysis revealed that the relative abundance of genus C. Jettenia (anammox related bacteria) increased from 11.9% to 12.3% when using 10 mg/L GNs, while declined to 8.3% at 100 mg/L γ-Fe2O3 NPs. Eventually, nanomaterials could stimulate the efficiency of anammox process, and this promotion and associated mechanism depend on their dose and composition.
Collapse
Affiliation(s)
- Ahmed Elreedy
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; Sanitary Engineering Department, Alexandria University, Alexandria, 21544, Egypt
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; Environmental Engineering Department, Zagazig University, Zagazig, 44519, Egypt.
| | - Manal Ali
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Civil Engineering Department, Aswan University, Aswan, 81511, Egypt
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mohamed Elsamadony
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521, Tanta City, Egypt
| |
Collapse
|
6
|
Tomaszewski M, Cema G, Ciesielski S, Łukowiec D, Ziembińska-Buczyńska A. Cold anammox process and reduced graphene oxide - Varieties of effects during long-term interaction. WATER RESEARCH 2019; 156:71-81. [PMID: 30904712 DOI: 10.1016/j.watres.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Because of its energy efficiency, the anaerobic ammonium oxidation (anammox) process has been recognized as the most promising biological nitrogen removal process, but its implementation in mainstream wastewater treatment plants is limited by its relatively high optimal temperature (30 °C). Recently, it was shown that during short-term batch experiments, reduced graphene oxide (RGO) displayed accelerated reaction activity at low temperatures (10-15 °C). In this study, the long-term effects of RGO on the low-temperature anammox process in a sequencing batch reactor (SBR), are studied for the first time, including different methods of interaction. The results presented here show that RGO can stimulate anammox activity up to 17% through two factors: bacterial growth stimulation, which was especially significant at higher temperatures (>15 °C), and an increase of the anammox reaction rate, which occurred only below 15 °C. The bacterial community structure was not influenced by addition of RGO. Moreover, after incubation in an anammox bioreactor, RGO showed signs of degradation and chemical changes as evidenced by the presence of oxygen and calcium on its surface. According to the literature and the obtained results, it is proposed that RGO is oxidized and oxygen is reduced by the organic mediator that is involved in the enzymatic reactions. However, activated sludge is a very complex structure created by numerous, undefined microorganisms, which makes it difficult to determine the exact oxidation mechanism.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | - Slawomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-719 Olsztyn, Poland
| | - Dariusz Łukowiec
- Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18a, 44-100 Gliwice, Poland
| | | |
Collapse
|
7
|
Tomaszewski M, Cema G, Ziembińska-Buczyńska A. Short-term effects of reduced graphene oxide on the anammox biomass activity at low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:206-211. [PMID: 30056228 DOI: 10.1016/j.scitotenv.2018.07.283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient process for nitrogen removal from wastewater, but its common use is limited by its relatively high optimal temperature (30 °C). One of the major bottlenecks of the implementation of mainstream PN/A process is the low activity of the anammox bacteria at low temperature. Due to this reason over the past years, numerous researchers have attempted to overcome this limitation. Recently it was shown that the reduced graphene oxide (RGO) can accelerate the anammox bacteria activity. However all these studies were performed at high temperatures (over 30 °C). Thus, in this study, supporting the anammox process at low temperatures (10-30 °C) by the RGO was investigated for the first time. The statistical analysis confirmed that RGO significantly affects the anammox activity. The stimulation effect of RGO on the anammox bacteria activity is of particular importance at low temperatures, when drastic decrease in process activity is observed at temperatures below 15 °C. The short-term experimental results demonstrated stimulation of the anammox activity at 13 °C, up to 28% by 15 mg RGO/L, but concentrations above 40 mg RGO/L caused the process inhibition, up to 30% with 50 mg RGO/L. However, the effect of RGO probably depends on the nanomaterial dose per biomass unit and the optimal range of this value was evaluated as 20 to 45 mg RGO/g VSS (volatile suspended solids).
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | | |
Collapse
|