Gogoi H, Banerjee S, Datta A. Photoluminescent silica nanostructures and nanohybrids.
Chemphyschem 2022;
23:e202200280. [PMID:
35686692 DOI:
10.1002/cphc.202200280]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Indexed: 11/06/2022]
Abstract
The complicated photophysics of wide variety of defects existing in silica (SiO2) layer of nanometer thickness determines wide spread photoluminescence bands of Si/SiO2 based system as well as SiO2 nanoparticles (NPs) for their applications in photovoltaic and optoelectronic devices. This review attempts to summarize different photophysical processes in pure SiO2 NPs. Moreover, these NPs also act as scaffolds for various guest molecules to perform their specific functions. Guest fluorophore molecules when trapped inside pores of SiO2 NPs exhibit a different photodynamics than free state, which opens up several important applications of hybrid SiO2 NPs in artificial photosynthesis, sensing, biology and optical fiber.
Collapse