1
|
Kim W, Kim G. Engineered 3D liver-tissue model with minispheroids formed by a bioprinting process supported with in situ electrical stimulation. Bioact Mater 2024; 35:382-400. [PMID: 38379698 PMCID: PMC10876469 DOI: 10.1016/j.bioactmat.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Three-dimensional (3D) bioprinting, an effective technique for building cell-laden structures providing native extracellular matrix environments, presents challenges, including inadequate cellular interactions. To address these issues, cell spheroids offer a promising solution for improving their biological functions. Particularly, minispheroids with 50-100 μm diameters exhibit enhanced cellular maturation. We propose a one-step minispheroid-forming bioprinting process incorporating electrical stimulation (E-MS-printing). By stimulating the cells, minispheroids with controlled diameters were generated by manipulating the bioink viscosity and stimulation intensity. To validate its feasibility, E-MS-printing process was applied to fabricate an engineered liver model designed to mimic the hepatic lobule unit. E-MS-printing was employed to print the hepatocyte region, followed by bioprinting the central vein using a core-shell nozzle. The resulting constructs displayed native liver-mimetic structures containing minispheroids, which facilitated improved hepatic cell maturation, functional attributes, and vessel formation. Our results demonstrate a new potential 3D liver model that can replicate native liver tissues.
Collapse
Affiliation(s)
- WonJin Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Fujiwara S, Hata M, Onohara I, Kawasaki D, Sueyoshi K, Hisamoto H, Suzuki M, Yasukawa T, Endo T. Dielectrophoretic trapping of nanosized biomolecules on plasmonic nanohole arrays for biosensor applications: simple fabrication and visible-region detection. RSC Adv 2023; 13:21118-21126. [PMID: 37449027 PMCID: PMC10337744 DOI: 10.1039/d3ra03245k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Surface plasmon resonance is an optical phenomenon that can be applied for label-free, real-time sensing to directly measure biomolecular interactions and detect biomarkers in solutions. Previous studies using plasmonic nanohole arrays have monitored and detected various biomolecules owing to the propagating surface plasmon polaritons (SPPs). Extraordinary optical transmission (EOT) that occurs in the near-infrared (NIR) and infrared (IR) regions is usually used for detection. Although these plasmonic nanohole arrays improve the sensitivity and throughput for biomolecular detection, these arrays have the following disadvantages: (1) molecular diffusion in the solution (making the detection of biomolecules difficult), (2) the device fabrication's complexities, and (3) expensive equipments for detection in the NIR or IR regions. Therefore, there is a need to fabricate plasmonic nanohole arrays as biomolecular detection platforms using a simple and highly reproducible procedure based on other SPP modes in the visible region instead of the EOT in the NIR or IR regions while suppressing molecular diffusion in the solution. In this paper, we propose the combination of a polymer-based gold nanohole array (Au NHA) obtained through an easy process as a simple platform and dielectrophoresis (DEP) as a biomolecule manipulation method. This approach was experimentally demonstrated using SPP and LSPR modes (not EOT) in the visible region and simple, label-free, rapid, cost-effective trapping and enrichment of nanoparticles (trapping time: <50 s) and bovine serum albumin (trapping time: <1000 s) was realized. These results prove that the Au NHA-based DEP devices have great potential for real-time digital and Raman bioimaging, in addition to biomarker detection.
Collapse
Affiliation(s)
- Satoko Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Misaki Hata
- Graduate School of Material Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan
| | - Ikumi Onohara
- Graduate School of Material Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan
| | - Daiki Kawasaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO) 5-3 Yonban-cho, Chiyoda Tokyo 102-8666 Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Masato Suzuki
- Graduate School of Material Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan
- Advanced Medical Engineering Research Institute, University of Hyogo Hyogo Japan
| | - Tomoyuki Yasukawa
- Graduate School of Material Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan
- Advanced Medical Engineering Research Institute, University of Hyogo Hyogo Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| |
Collapse
|
3
|
Lv D, Zhang X, Xu M, Cao W, Liu X, Deng J, Yang J, Hu N. Trapping and releasing of single microparticles and cells in a microfluidic chip. Electrophoresis 2022; 43:2165-2174. [PMID: 35730632 DOI: 10.1002/elps.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022]
Abstract
A microfluidic device was designed and fabricated to capture single microparticles and cells by using hydrodynamic force and selectively release the microparticles and cells of interest via negative dielectrophoresis by activating selected individual microelectrodes. The trap microstructure was optimized based on numerical simulation of the electric field as well as the flow field. The capture and selective release functions of the device were verified by multi-types microparticles with different diameters and K562 cells. The capture efficiencies/release efficiencies were 95.55% ± 0.43%/96.41% ± 1.08% and 91.34% ± 0.01%/93.67% ± 0.36% for microparticles and cells, respectively. By including more traps and microelectrodes, the device can achieve high throughput and realize the visual separation of microparticles/cells of interest in a large number of particle/cell groups.
Collapse
Affiliation(s)
- Dan Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Xiaoling Zhang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, P. R. China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, P. R. China
| | - Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Wenyue Cao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Xing Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Jinan Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
4
|
Lu J, Dai B, Wang K, Long Y, Yang Z, Chen J, Huang S, Zheng L, Fu Y, Wan W, Zhuang S, Guan Y, Zhang D. High-Throughput Cell Trapping in the Dentate Spiral Microfluidic Channel. MICROMACHINES 2021; 12:mi12030288. [PMID: 33803303 PMCID: PMC8000121 DOI: 10.3390/mi12030288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Cell trapping is a very useful technique in a variety of cell-based assays and cellular research fields. It requires a high-throughput, high-efficiency operation to isolate cells of interest and immobilize the captured cells at specific positions. In this study, a dentate spiral microfluidic structure is proposed for cell trapping. The structure consists of a main spiral channel connecting an inlet and an out and a large number of dentate traps on the side of the channel. The density of the traps is high. When a cell comes across an empty trap, the cell suddenly makes a turn and enters the trap. Once the trap captures enough cells, the trap becomes closed and the following cells pass by the trap. The microfluidic structure is optimized based on the investigation of the influence over the flow. In the demonstration, 4T1 mouse breast cancer cells injected into the chip can be efficiently captured and isolated in the different traps. The cell trapping operates at a very high flow rate (40 μL/s) and a high trapping efficiency (>90%) can be achieved. The proposed high-throughput cell-trapping technique can be adopted in the many applications, including rapid microfluidic cell-based assays and isolation of rare circulating tumor cells from a large volume of blood sample.
Collapse
Affiliation(s)
- Jiawei Lu
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (B.D.); (Y.L.); (J.C.); (S.H.); (L.Z.); (S.Z.)
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (B.D.); (Y.L.); (J.C.); (S.H.); (L.Z.); (S.Z.)
| | - Kan Wang
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China; (K.W.); (W.W.)
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (B.D.); (Y.L.); (J.C.); (S.H.); (L.Z.); (S.Z.)
| | - Zhuoqing Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China;
| | - Junyi Chen
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (B.D.); (Y.L.); (J.C.); (S.H.); (L.Z.); (S.Z.)
| | - Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (B.D.); (Y.L.); (J.C.); (S.H.); (L.Z.); (S.Z.)
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (B.D.); (Y.L.); (J.C.); (S.H.); (L.Z.); (S.Z.)
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Wenbin Wan
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China; (K.W.); (W.W.)
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (B.D.); (Y.L.); (J.C.); (S.H.); (L.Z.); (S.Z.)
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China; (K.W.); (W.W.)
- Correspondence: (Y.G.); (D.Z.)
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (B.D.); (Y.L.); (J.C.); (S.H.); (L.Z.); (S.Z.)
- Correspondence: (Y.G.); (D.Z.)
| |
Collapse
|
5
|
Hakim KS, Lapizco-Encinas BH. Analysis of microorganisms with nonlinear electrokinetic microsystems. Electrophoresis 2021; 42:588-604. [PMID: 33151541 DOI: 10.1002/elps.202000233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Nonlinear electrokinetics (EK), specifically electrophoresis of the second kind, dielectrophoresis (DEP) and electrorotation (EROT), have gained significant interest recently for their flexibility and labeless discriminant manner of operation. The current applications of these technologies are a clear advancement from what they were when first discovered, but also still show strong signs of future growth. The present review article presents a discussion of the current uses of microscale nonlinear EK technologies as analytical, sensing, and purification tools for microorganisms. The discussion is focused on some of the latest discoveries with various nonlinear EK microfluidic techniques, such as DEP particle trapping and EROT for particle assessments, for the analysis of microorganisms ranging from viruses to parasites. Along the way, special focus was given to key research articles from within the past two years to provide the most up-to-date knowledge on the current state-of-the-art within the field of microscale EK, and from there, an outlook on where the future of the field is headed is also included.
Collapse
Affiliation(s)
- Kel S Hakim
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
6
|
Crowther CV, Hilton SH, Kemp L, Hayes MA. Isolation and identification of Listeria monocytogenes utilizing DC insulator-based dielectrophoresis. Anal Chim Acta 2019; 1068:41-51. [PMID: 31072476 DOI: 10.1016/j.aca.2019.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
Foodborne pathogens pose one of the greatest challenges facing public health in the modern day. One important pathogen, Listeria monocytogenes, is known to be challenging to detect and identify. Three serovars cause most of the Listeria related food-borne illnesses, which the Centers for Disease Control currently utilizes a combination of pulsed-field gel electrophoresis and whole genome sequencing for identification and the determination of clusters and outbreaks. There is a potential method for rapid collection of epidemiological information by exploiting the electrokinetic and dielectrophoretic properties of the L. monocytogenes serovars. Using dielectrophoresis, the three most commonly identified serovars of L. monocytogenes can be distinguished from each other. The electrokinetic and dielectrophoretic mobilities of each serovar was determined through a combination of electrokinetic velocity and dielectrophoretic trapping assessments, in conjunction with finite element multi-physics modeling. A mathematical model of the data, which defines the various factors of dielectrophoretic trapping, is utilized and verified based on the behavior of L. monocytogenes in the microchannel. The trapping condition for the serovars were evaluated as 2.8±0.2×109, 2.2±0.2×109, and 2.2±0.3×109Vm-2 and the electrokinetic mobility was assessed to be 19±0.7, 17±0.7, and for the L. monocytogenes serovars 1/2a, 1/2b, and 4b, respectively.
Collapse
Affiliation(s)
- Claire V Crowther
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - LaKeta Kemp
- Phoenix Research Institute, Phoenix, AZ, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|