1
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
2
|
Aluminum-Catalyzed Cross Selective C3–N1′ Coupling Reactions of N-Methoxyindoles with Indoles. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
C3–N1′ bond formation of bisindoles has been a great challenge due to the intrinsic reactivity of indoles as both C3 and N1-nucleophilic character. Herein, we demonstrate an C3–N1′ cross-coupling reaction of indoles using N-methoxyindoles as N-electrophilic indole reagents in the presence of Lewis acid. The bisindoles generated in this transformation are latent C3-nucleophile, allowing them to be used as strategic intermediates in sequential C3–N1′–C3′–N1″ triindole formations. The potential synthetic usefulness of this sequential transformation was highlighted upon application to the construction of C3–N1 looped polyindoles.
Collapse
|
3
|
Xiong T, Zhou X, Jiang J. Dearomative oxyphosphorylation of indoles enables facile access to 2,2-disubstituted indolin-3-ones. Org Biomol Chem 2022; 20:5721-5725. [PMID: 35842851 DOI: 10.1039/d2ob01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient oxidative dearomatization of indoles with H-phosphorus oxides in the presence of TEMPO oxoammonium salt has been demonstrated. Through the intramolecular oxidative dearomatization of indoles and subsequent intermolecular nucleophilic addition with phosphorus nucleophile, a variety of structurally diverse arylphosphoryl and alkylphosphoryl indolin-3-ones were obtained in good yields with a broad substrate scope and high functional-group compatibility.
Collapse
Affiliation(s)
- Ting Xiong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Xingcui Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| |
Collapse
|
4
|
Huang Q, Peng X, Li H, He H, Liu L. Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules 2022; 27:772. [PMID: 35164036 PMCID: PMC8839487 DOI: 10.3390/molecules27030772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
An efficient and general method for the synthesis of 3-sulfenylindoles and 3-selenylindoles employing visible-light irradiation with graphene oxide as a promoter at room temperature has been achieved. The reaction features are high yields, simple operation, metal-free and iodine-free conditions, an easy-to-handle oxidant, and gram-scalable synthesis. This simple protocol allows one to access a wide range of 3-arylthioindoles, 3-arylselenylindoles, and even 3-thiocyanatoindoles with good to excellent yields.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Hong Li
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Haiping He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| |
Collapse
|
5
|
Wang Z, Xu S, Wang K, Kong N, Liu X. Recent Studies of Bifunctionalization of Simple Indoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhan‐Yong Wang
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Shaohong Xu
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Kai‐Kai Wang
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Niuniu Kong
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Xue Liu
- Department of Chemistry Lishui University Zhejiang P. R. China
| |
Collapse
|
6
|
Zhou S, Liu Q, Bao M, Huang J, Wang J, Hu W, Xu X. Gold(i)-catalyzed redox transformation of o-nitroalkynes with indoles for the synthesis of 2,3′-biindole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00134e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A gold(i)-catalyzed cascade reaction of o-nitroalkynes with indoles has been reported for the rapid assembly of 2-indolyl indolone N-oxides, which exhibit high anticancer potency against SCLC cells.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qianqian Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jie Huang
- Guangdong Lung Cancer Institute
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences
- Guangzhou 510080
- China
| | - Junjian Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
7
|
Liu C, Peng X, Hu D, Shi F, Huang P, Luo J, Liu Q, Liu L. The direct C3 chalcogenylation of indolines using a graphene-oxide-promoted and visible-light-induced synergistic effect. NEW J CHEM 2020. [DOI: 10.1039/d0nj00747a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green methodology for the construction of carbon–chalcogen (S and Se) bonds via a GO-promoted and metal-free light-induced synergistic effect is demonstrated.
Collapse
Affiliation(s)
- Chunping Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Feng Shi
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Juanjuan Luo
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Qian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
8
|
Peng X, Zen Y, Liu Q, Liu L, Wang H. Graphene oxide as a green carbon material for cross-coupling of indoles with ethers via oxidation and the Friedel–Crafts reaction. Org Chem Front 2019. [DOI: 10.1039/c9qo00926d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of using GO as a carbon material facilitated C(sp2)–C(sp3) bond formation.
Collapse
Affiliation(s)
- Xiangjun Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- P. R. China
- School of Pharmaceutical Science
| | - Yong Zen
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Qian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
- Department of Chemistry and Chemical Engineering
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
9
|
Guo S, Wang F, Tao L, Zhang X, Fan X. Solvent-Dependent Copper-Catalyzed Indolyl C3-Oxygenation and N1-Cyclization Reactions: Selective Synthesis of 3 H-Indol-3-ones and Indolo[1,2- c]quinazolines. J Org Chem 2018. [PMID: 29513984 DOI: 10.1021/acs.joc.8b00231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple and practical procedure for the selective preparation of 3 H-indol-3-one and indolo[1,2- c]quinazoline derivatives through copper-catalyzed aerobic oxygenation and intramolecular cyclization reactions of 2-(2-amidoaryl)-1 H-indoles in the presence of acid has been disclosed. Interestingly, the reaction outcomes are exclusively dependent on the reaction medium employed. With DMF as the solvent, the amide moiety of indole substrates could act as an auxiliary to enable the indole's oxygenation reaction with molecular oxygen from air as the oxidant to give 3 H-indol-3-one derivatives in a highly selective manner. On the other hand, when the reactions were performed in 1,4-dioxane, the amide moiety switched to participate in an intramolecular indolyl N1-cyclization to afford indolo[1,2- c]quinazolines as the predominating products.
Collapse
Affiliation(s)
- Shenghai Guo
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Fang Wang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Li Tao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Xinying Zhang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Xuesen Fan
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| |
Collapse
|
10
|
Peng X, Xu X, Chen S, Tian Z, Liu L, Liu Q. Cu(I)-catalyzed one-pot reactions of isatins, indoles, and amines toward unsymmetrically substituted 2-carbonylarylureas. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Liao H, Peng X, Hu D, Xu X, Huang P, Liu Q, Liu L. CoCl2-promoted TEMPO oxidative homocoupling of indoles: access to tryptanthrin derivatives. Org Biomol Chem 2018; 16:5699-5706. [DOI: 10.1039/c8ob01216d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of one-step synthesis of tryptanthrin derivatives using indoles as the only substratesviadirect C–H transformation.
Collapse
Affiliation(s)
- Huiwu Liao
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xianyun Xu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Qian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
12
|
Li JS, Liu YJ, Zhang GW, Ma JA. Catalytic Asymmetric Mukaiyama–Mannich Reaction of Cyclic C-Acylimines with Difluoroenoxysilanes: Access to Difluoroalkylated Indolin-3-ones. Org Lett 2017; 19:6364-6367. [DOI: 10.1021/acs.orglett.7b03213] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jin-Shan Li
- Department of Chemistry, Tianjin Key Laboratory
of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Yong-Jie Liu
- Department of Chemistry, Tianjin Key Laboratory
of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Guang-Wu Zhang
- Department of Chemistry, Tianjin Key Laboratory
of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory
of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Huang P, Peng X, Hu D, Liao H, Tang S, Liu L. Regioselective synthesis of 2,3′-biindoles mediated by an NBS-induced homo-coupling of indoles. Org Biomol Chem 2017; 15:9622-9629. [DOI: 10.1039/c7ob02312j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the synthesis of 2,3′-biindole and [3,2-a]carbazole derivatives via an NBS-induced homo-coupling of indoles with high regioselectivity.
Collapse
Affiliation(s)
- Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Huiwu Liao
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Shaobin Tang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
14
|
Wen SS, Zhou ZF, Xiao JA, Li J, Xiang H, Yang H. Facile oxidative cyclization to access C2-quaternary 2-hydroxy-indolin-3-ones: synthetic studies towards matemone. NEW J CHEM 2017. [DOI: 10.1039/c7nj02246h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic oxidation can do it! The precursor for matemone can be facilely prepared in 21% overall yield in 8 steps. The key step is the oxidative cyclization by utilizing CAN and TEMPO to install the quaternary centre.
Collapse
Affiliation(s)
- Sai-Shuai Wen
- College of Chemistry and Chemical Engineering, Central South University
- Changsha
- P. R. China
| | - Zhao-Fang Zhou
- College of Chemistry and Chemical Engineering, Central South University
- Changsha
- P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Guangxi Teachers Education University
- Nanning
- P. R. China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Central South University
- Changsha
- P. R. China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University
- Changsha
- P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University
- Changsha
- P. R. China
| |
Collapse
|