1
|
Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 16:100168. [DOI: 10.1016/j.medntd.2022.100168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
2
|
Yadav N, Kumar U, Chauhan VS. Conformationally restricted, dipeptide-based, self-assembled nanoparticles for efficient vancomycin delivery. Nanomedicine (Lond) 2022; 17:2023-2035. [PMID: 36645108 DOI: 10.2217/nnm-2022-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: Emergence of vancomycin (Van) resistance, and usage of its higher dose and short half-life are posing a serious concern. Slow and sustained release of Van using a nanodelivery system may overcome these problems. Materials & methods: Arginine-α,β-dehydrophenylalanine (RΔF) was synthesized using solution-phase synthesis which self-assembled into nanospheres. Van was entrapped in the nanoparticles (NPs). In vitro and in vivo efficacy of Van-RΔF was determined using broth microdilution and the mouse thigh infection model, respectively. Results & conclusion: Van-RΔF NPs efficiently inhibited bacterial growth (Staphylococcus aureus), while Van alone showed limited growth inhibition in in vitro. Intravenous administration of Van-RΔF in mice with bacterial thigh infection showed enhanced efficacy (double) compared with Van alone, which indicates its high potential for further development.
Collapse
Affiliation(s)
- Nitin Yadav
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Delhi Institute of Pharmaceutical Sciences & Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi, 110017, India
| | - Utkarsh Kumar
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virander Singh Chauhan
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
3
|
Rama M, Vijayalakshmi U. Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Meng F, Yin Z, Ren X, Geng Z, Su J. Construction of Local Drug Delivery System on Titanium-Based Implants to Improve Osseointegration. Pharmaceutics 2022; 14:pharmaceutics14051069. [PMID: 35631656 PMCID: PMC9146791 DOI: 10.3390/pharmaceutics14051069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Titanium and its alloys are the most widely applied orthopedic and dental implant materials due to their high biocompatibility, superior corrosion resistance, and outstanding mechanical properties. However, the lack of superior osseointegration remains the main obstacle to successful implantation. Previous traditional surface modification methods of titanium-based implants cannot fully meet the clinical needs of osseointegration. The construction of local drug delivery systems (e.g., antimicrobial drug delivery systems, anti-bone resorption drug delivery systems, etc.) on titanium-based implants has been proved to be an effective strategy to improve osseointegration. Meanwhile, these drug delivery systems can also be combined with traditional surface modification methods, such as anodic oxidation, acid etching, surface coating technology, etc., to achieve desirable and enhanced osseointegration. In this paper, we review the research progress of different local drug delivery systems using titanium-based implants and provide a theoretical basis for further research on drug delivery systems to promote bone–implant integration in the future.
Collapse
Affiliation(s)
- Fanying Meng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China;
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| |
Collapse
|
5
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
6
|
Fatima N, Qazi UY, Mansha A, Bhatti IA, Javaid R, Abbas Q, Nadeem N, Rehan ZA, Noreen S, Zahid M. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Patil NA, Kandasubramanian B. Functionalized polylysine biomaterials for advanced medical applications: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Gowri M, Latha N, Suganya K, Murugan M, Rajan M. Calcium alginate nanoparticle crosslinked phosphorylated polyallylamine to the controlled release of clindamycin for osteomyelitis treatment. Drug Dev Ind Pharm 2021; 47:280-291. [PMID: 33493022 DOI: 10.1080/03639045.2021.1879835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Osteomyelitis is one of the infections of the bone, and the treatment needs to the infection problems. Here, a local therapeutic approach for efficient drug delivery systems was designed to enhance the antibiotic drug's therapeutic activity. Calcium-Alginate nanoparticle (Ca-Alg) crosslinked phosphorylated polyallylamine (PPAA) was prepared through the salting-out technique, and it achieved 82.55% encapsulation of Clindamycin drug. The physicochemical characterizations of FTIR, SEM/EDX, TEM, and XRD were investigated to confirm the materials nature and formation. Clindamycin loaded Ca-Alg/PPAA system showed sustained Clindamycin release from the carrier. Cell viability was assessed in bone-related cells by Trypan blue assay and MTT assay analysis method. Both assay results exhibited better cell viability of synthesized materials against MG63 cells. MIC value of Ca-Alg/PPAA/Clindamycin in the Methicillin-resistant Staphylococcus aureus (MRSA) pathogen was 275 µg/mL, and it was 120 µg/mL for Enterobacter cloacae pathogen. The materials promising material for Osteomyelitis affected bone regeneration without any destructive effect and speedy recovery of infected parts from these investigations.
Collapse
Affiliation(s)
- Murugesan Gowri
- Department of Chemistry, Kandaswami Kandar's College, Namakkal, Tamil Nadu, India
| | - Nachimuthu Latha
- Department of Chemistry, Kandaswami Kandar's College, Namakkal, Tamil Nadu, India
| | - Kannan Suganya
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
9
|
Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, Laurencin CT. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv Healthc Mater 2021; 10:e2001414. [PMID: 33103370 PMCID: PMC8218309 DOI: 10.1002/adhm.202001414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Graphene and its derivatives have continued to garner worldwide interest due to their unique characteristics. Having expanded into biomedical applications, there have been efforts to employ their exceptional properties for the regeneration of different tissues, particularly bone. This article presents a comprehensive review on the usage of graphene-based materials for bone regenerative engineering. The graphene family of materials (GFMs) are used either alone or in combination with other biomaterials in the form of fillers in composites, coatings for both scaffolds and implants, or vehicles for the delivery of various signaling and therapeutic agents. The applications of the GFMs in each of these diverse areas are discussed and emphasis is placed on the characteristics of the GFMs that have implications in this regard. In tandem and of importance, this article evaluates the safety and biocompatibility of the GFMs and carefully elucidates how various factors influence the biocompatibility and biodegradability of this new class of nanomaterials. In conclusion, the challenges and opportunities regarding the use of the GFMs in regenerative engineering applications are discussed, and future perspectives for the developments in this field are proposed.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
10
|
Ezzati N, Mahjoub AR, Shokrollahi S, Amiri A, Abolhosseini Shahrnoy A. Novel Biocompatible Amino Acids-Functionalized Three-dimensional Graphene Foams: As the Attractive and Promising Cisplatin Carriers for Sustained Release Goals. Int J Pharm 2020; 589:119857. [PMID: 32898631 DOI: 10.1016/j.ijpharm.2020.119857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Application of amino acids-immobilized porous materials for drug delivery studies has been attracted a lot of attention in the recent years. In this study, amino acids-grafted graphene foams were prepared by anchoring of Alanine (Ala), Cysteine (Cys) and Glycine (Gly) amino acids on the surface of graphene oxide (GO) nanostructures and used as the novel biocompatible carriers to control releasing of the cisplatin as the cytotoxic anticancer drug. The characterization of prepared compounds was done by the FT-IR, Raman, TGA, N2 adsorption-desorption isotherms, SEM, and TEM techniques. Adsorption and in vitro release behavior of amino acids-functionalized foams were studied using ICP standard method. The results show that the drug loading amount and the drug releasing rate are significantly enhanced upon functionalization process. The Ala-Foam sample with the larger surface area and pore volume showed a higher loading content (4.53%) than other samples. In addition, the MTT test on the two MCF-7 and HepG2 human cancer cell lines exhibited an acceptable biocompatibility and sustainable drug releasing from the carriers up to 48 h, leading to the dosage frequency decrease and the patient compliance improvement.
Collapse
Affiliation(s)
- Nasim Ezzati
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box. 14155-4383, Tehran, Iran.
| | - Ali Reza Mahjoub
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box. 14155-4383, Tehran, Iran.
| | - Sudabeh Shokrollahi
- Department of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| | - Ahmad Amiri
- Department of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| | | |
Collapse
|
11
|
Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020; 15:7523-7551. [PMID: 33116486 PMCID: PMC7547809 DOI: 10.2147/ijn.s271917] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding072350, Hebei Province, People’s Republic of China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People’s Republic of China
| | - Ruihong Zhang
- Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding072350, Hebei Province, People’s Republic of China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing100084, People’s Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People’s Republic of China
| |
Collapse
|
12
|
Weng W, Li X, Nie W, Liu H, Liu S, Huang J, Zhou Q, He J, Su J, Dong Z, Wang D. One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment. Int J Nanomedicine 2020; 15:5027-5042. [PMID: 32764934 PMCID: PMC7371608 DOI: 10.2147/ijn.s241859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Background Bactericidal capacity, durable inhibition of biofilm formation, and a three-dimensional (3D) porous structure are the emphases of infected bone defect (IBD) treatment via local scaffold implantation strategy. Purpose In this study, silver nanoparticle (AgNP)-loaded nano-hydroxyapatite (nHA)@ reduced graphene oxide (RGO) 3D scaffolds (AHRG scaffolds) were designed to alleviate bone infection, inhibit biofilm formation, and promote bone repair through the synergistic effects of AgNPs, RGO, and nHA. Materials and Methods AHRGs were prepared using a one-step preparation method, to create a 3D porous scaffold to facilitate a uniform distribution of AgNPs and nHA. Methicillin-resistant Staphylococcus aureus (MRSA) was used as a model-resistant bacterium, and the effects of different silver loadings on the antimicrobial activity and cytocompatibility of materials were evaluated. Finally, a rabbit IBD model was used to evaluate the therapeutic effect of the AHRG scaffold in vivo. Results The results showed successful synthesis of the AHRG scaffold. The ideal 3D porous structure was verified using scanning electron microscopy and transmission electron microscopy, and X-ray photoelectron spectroscopy and selected area electron diffraction measurements revealed uniform distributions of AgNP and nHA. In vitro antibacterial and cytocompatibility indicated that the 4% AHRG scaffolds possessed the most favorable balance of bactericidal properties and cytocompatibility. In vivo evaluation of the IBD model showed promising treatment efficacy of AHRG scaffolds. Conclusion The as-fabricated AHRG scaffolds effectively eliminated infection and inhibited biofilm formation. IBD repair was facilitated by the bactericidal properties and 3D porous structure of the AHRG scaffold, suggesting its potential in the treatment of IBDs.
Collapse
Affiliation(s)
- Weizong Weng
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.,Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China
| | - Xiaoqun Li
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Wei Nie
- College of Chemistry, Chemical Engineering and Biotechnology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
| | - Haoyuan Liu
- Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China
| | - Shanshan Liu
- Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China
| | - Jianming Huang
- Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China
| | - Qirong Zhou
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jia He
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jiacan Su
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Zhifeng Dong
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200233, People's Republic of China
| | - Dongliang Wang
- Orthopeadics Department, Xinhua Hospital Affiliated to the Shanghai Jiaotong University, Shanghai 200433, People's Republic of China
| |
Collapse
|
13
|
Krishnan AG, Biswas R, Menon D, Nair MB. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci 2020; 8:2653-2665. [DOI: 10.1039/d0bm00140f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study shows the development of a biodegradable bi-functional composite scaffold that can reduce bacterial infection, while promotes bone regeneration in osteomyelitis, without the need for revision surgery.
Collapse
Affiliation(s)
- Amit G. Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Raja Biswas
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Manitha B. Nair
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| |
Collapse
|
14
|
Tschon M, Sartori M, Contartese D, Giavaresi G, Aldini NN, Fini M. Use of Antibiotic Loaded Biomaterials for the Management of Bone Prosthesis Infections: Rationale and Limits. Curr Med Chem 2019; 26:3150-3174. [PMID: 29189125 DOI: 10.2174/0929867325666171129220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Periprosthetic joint infection still represents a challenging issue for the orthopedic community. In the United States approximately a million joint arthroplasties are performed each year, with infection rates ranging from 1 to 2%: revisions has significant implications on health care costs and appropriate resource management. The use of locally applied antibiotics as a prophylaxis measure or as a component of the therapeutic approach in primary or revision surgery is finalized at eliminating any microorganism and strengthening the effectiveness of systemic therapy. OBJECTIVE The present review of clinical and preclinical in vivo studies tried to identify advantages and limitations of the materials used in the clinical orthopedic practice and discuss developed biomaterials, innovative therapeutic approaches or strategies to release antibiotics in the infected environment. METHODS A systematic search was carried out by two independent observers in two databases (www.pubmed.com and www.scopus.com) in order to identify pre-clinical and clinical reports in the last 10 years. RESULTS 71 papers were recognized eligible: 15 articles were clinical studies and 56 in vivo studies. CONCLUSION Polymethylmethacrylate was the pioneer biomaterial used to manage infections after total joint replacement. Despite its widespread use, several issues still remain debated: the methods to combine materials and antibiotics, the choice of antibiotics, releasing kinetics and antibiotics efficacy. In the last years, the interest was directed towards the selection of different antibiotics, loaded in association with more than only one class and biomaterials with special focus on delivery systems as implant surface coatings, hydrogels, ceramics, micro-carriers, microspheres or nanoparticles.
Collapse
Affiliation(s)
- M Tschon
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - M Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Istituto Ortopedico Rizzoli - RIT Department, via di Barbiano 1/10, 40136, Bologna, Italy
| | - D Contartese
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - G Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - N Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
15
|
He X, Zhou Z, Han Z, Zeng Y, Chen X, Su J. Mechanism of Controlled Release of Vancomycin from Crumpled Graphene Oxides. ACS OMEGA 2019; 4:12252-12258. [PMID: 31460341 PMCID: PMC6682005 DOI: 10.1021/acsomega.9b00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
The physical and chemical interactions with vancomycin (VAN) were accessed between graphene oxide (GO) and crumpled graphene oxide (CGO) to present the possible loading and release mechanisms. The improved hydrophilicity and surface charge were found on CGO through water contact angle and ζ-potential measurements. Fourier transform infrared and X-ray photoelectron spectroscopies confirmed the attachment of VAN onto CGO or GO through π-π stacking and hydrogen bonding. Both CGO-VAN and GO-VAN drug complexes showed pH-controlled release property. The high VAN loading and delayed release in CGO-VAN system were mainly due to the crumpled morphology.
Collapse
Affiliation(s)
- Xing He
- School
of Material Science and Engineering, University
of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ziyan Zhou
- School
of Material Science and Engineering, University
of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhuo Han
- Department
of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yang Zeng
- School
of Material Science and Engineering, University
of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xiaojie Chen
- School
of Material Science and Engineering, University
of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiacan Su
- Department
of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
16
|
Han L, Jiang Y, Lv C, Gan D, Wang K, Ge X, Lu X. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration. Colloids Surf B Biointerfaces 2019; 179:470-478. [DOI: 10.1016/j.colsurfb.2019.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
|
17
|
Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E737. [PMID: 31086043 PMCID: PMC6567318 DOI: 10.3390/nano9050737] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Bacteria mediated infections may cause various acute or chronic illnesses and antibiotic resistance in pathogenic bacteria has become a serious health problem around the world due to their excessive use or misuse. Replacement of existing antibacterial agents with a novel and efficient alternative is the immediate demand to alleviate this problem. Graphene-based materials have been exquisitely studied because of their remarkable bactericidal activity on a wide range of bacteria. Graphene-based materials provide advantages of easy preparation, renewable, unique catalytic properties, and exceptional physical properties such as a large specific surface area and mechanical strength. However, several queries related to the mechanism of action, significance of size and composition toward bacterial activity, toxicity criteria, and other issues are needed to be addressed. This review summarizes the recent efforts that have been made so far toward the development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets. This review describes the inherent antibacterial activity of graphene-family and recent advances that have been made on graphene-based antibacterial materials covering the functionalization with silver nanoparticles, other metal ions/oxides nanoparticles, polymers, antibiotics, and enzymes along with their multicomponent functionalization. Furthermore, the review describes the biosafety of the graphene-based antibacterial materials. It is hoped that this review will provide valuable current insight and excite new ideas for the further development of safe and efficient graphene-based antibacterial materials.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Rongzhao Zhang
- Analysis and Testing Center, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
18
|
Wright ZM, Arnold AM, Holt BD, Eckhart KE, Sydlik SA. Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0081-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Li M, Xiong P, Yan F, Li S, Ren C, Yin Z, Li A, Li H, Ji X, Zheng Y, Cheng Y. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact Mater 2018; 3:1-18. [PMID: 29744438 PMCID: PMC5935763 DOI: 10.1016/j.bioactmat.2018.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023] Open
Abstract
Hydroxyapatite (HA) is an attractive bioceramic for hard tissue repair and regeneration due to its physicochemical similarities to natural apatite. However, its low fracture toughness, poor tensile strength and weak wear resistance become major obstacles for potential clinical applications. One promising method to tackle with these problems is exploiting graphene and its derivatives (graphene oxide and reduced graphene oxide) as nanoscale reinforcement fillers to fabricate graphene-based hydroxyapatite composites in the form of powders, coatings and scaffolds. The last few years witnessed increasing numbers of studies on the preparation, mechanical and biological evaluations of these novel materials. Herein, various preparation techniques, mechanical behaviors and toughen mechanism, the in vitro/in vivo biocompatible analysis, antibacterial properties of the graphene-based HA composites are presented in this review.
Collapse
Affiliation(s)
- Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Pan Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhichen Yin
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Huafang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yufeng Zheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Zhou X, Weng W, Chen B, Feng W, Wang W, Nie W, Chen L, Mo X, Su J, He C. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J Mater Chem B 2018; 6:740-752. [DOI: 10.1039/c7tb01246b] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A highly porous composite scaffold with localized and sustained antibiotic release property for treatment of infected bone defects.
Collapse
|
21
|
Li D, Liu T, Yu X, Wu D, Su Z. Fabrication of graphene–biomacromolecule hybrid materials for tissue engineering application. Polym Chem 2017. [DOI: 10.1039/c7py00935f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this review, we demonstrated the recent advances in the fabrication strategies of graphene–biomacromolecule hybrid materials and their applications in the field of tissue engineering, such as implant materials, cell culture scaffolds, and regenerative medicine.
Collapse
Affiliation(s)
- Dapeng Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Tianjiao Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Xiaoqing Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Di Wu
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| |
Collapse
|