1
|
Sargur Ranganath A, Vellingiri S, Low HY. Tuning response amplitude in nanoimprinted thermoresponsive polymer blend. J Appl Polym Sci 2022. [DOI: 10.1002/app.51936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anupama Sargur Ranganath
- Engineering and Product Development (EPD) Singapore University of Technology & Design (SUTD) Singapore
| | - Suganya Vellingiri
- Engineering and Product Development (EPD) Singapore University of Technology & Design (SUTD) Singapore
| | - Hong Yee Low
- Engineering and Product Development (EPD) Singapore University of Technology & Design (SUTD) Singapore
| |
Collapse
|
2
|
Ding F, Gao M. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review. Adv Colloid Interface Sci 2021; 289:102377. [PMID: 33601298 DOI: 10.1016/j.cis.2021.102377] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/18/2023]
Abstract
Wettability, a fundamental property of porous surface, occupies a pivotal position in the fields of enhanced oil recovery, organic contaminant adsorption and oil/water separation. In this review, wettability and the related applications are systematically expounded from the perspectives of hydrophilicity, hydrophobicity and super-wettability. Four common measurement methods are generalized and categorized into contact angle method and ratio method, and influencing factors (temperature, the type and layer charge of matrix, the species and structure of modifier) as well as their corresponding altering methods (inorganic, organic and thermal modification etc.) of wettability are overviewed. Different roles of wettability alteration in enhanced oil recovery, organic contaminant adsorption as well as oil/water separation are summarized. Among these applications, firstly, the hydrophilic alteration plays a key role in recovery of the oil production process; secondly, hydrophobic circumstance of surface drives the organic pollutant adsorption more effectually; finally, super-wetting property of matrix ensures the high-efficient separation of oil from water. This review also identifies importance, challenges and future prospects of wettability alteration, and as a result, furnishes the essential guidance for selection and design inspiration of the wettability modification, and supports the further development of pore wettability application.
Collapse
|
3
|
Umar M, Son D, Arif S, Kim M, Kim S. Multistimuli-Responsive Optical Hydrogel Nanomembranes to Construct Planar Color Display Boards for Detecting Local Environmental Changes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55231-55242. [PMID: 33232110 DOI: 10.1021/acsami.0c15195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Planar metal-insulator-metal (MIM) optical cavities are attractive for biochemical and environmental sensing applications, as they offer a cost-effective cavity platform with acceptable performances. However, localized detection and scope of expansion of applicable analytes are still challenging. Here, we report a stimuli-responsive color display board that can exhibit local spectral footprints, for locally applied heat and alcohol presence. A thermoresponsive, optically applicable, and patternable copolymer, poly(N-isopropylacrylamide-r-glycidyl methacrylate), is synthesized and used with a photosensitive cross-linker to produce a responsive insulating layer. This layer is then sandwiched between two nanoporous silver membranes to yield a thermoresponsive MIM cavity. The resonant spectral peak is blue-shifted as the environmental temperature increases, and the dynamic range of the resonant peak is largely affected by the composition and structure of the cross-linker and the copolymer. The localized temperature increase of silk particles with gold nanoparticles by laser heating can be measured by reading the spectral shift. In addition, a free-standing color board can be transferred onto a curved biological tissue sample, allowing us to simultaneously read the temperature of the tissue sample and the concentration of ethanol. The stimuli-responsive MIM provides a new way to optically sense localized environmental temperature and ethanol concentration fluctuations.
Collapse
Affiliation(s)
- Muhammad Umar
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Dongwan Son
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sara Arif
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sunghwan Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Physics, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Sun F, Ren HT, Li TT, Huang SY, Zhang Y, Lou CW, Lin JH. Bioinspired design of underwater superoleophobic Poly(N-isopropylacrylamide)/ polyacrylonitrile/TiO 2 nanofibrous membranes for highly efficient oil/water separation and photocatalysis. ENVIRONMENTAL RESEARCH 2020; 186:109494. [PMID: 32302872 DOI: 10.1016/j.envres.2020.109494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Inspired by fish scales, this study prepares a thermo-responsive underwater oleophobic PNIPAM/PAN/TiO2 nanofibrous membranes by traditional electrospinning technique using poly-N-isopropylacrylamide (PNIPAM) and polyacrylonitrile (PAN). Thermal properties, mechanical properties, surface chemical composition, wettability, photocatalysis, and oil/water separation of PNIPAM/PAN/TiO2 membrane are explored compared to pure PNIPAM membrane. Result reveals that PAN/TiO2 compounds make PNIPAM membrane with a smaller fiber diameter of 141 nm and high tensile stress of 7.4 MPa, and also decompose 98% of rhodamine B after UV light radiation. This bioinspired design structure endows the membrane with superhydrophilicity with a low water contact angle, and underwater superoleophobicity with a high oil contact angle of 157° (petroleum ether) and 151° (dichloromethane). This membrane can efficiency separate oil/water mixture with a high separation efficiency. Moreover, the resultant PNIPAM/PAN/TiO2 membrane has the bionic fish scale structure, and has wettability respond at lower critical solution temperature making the water flux decreased from 10013 ± 367 L m-2·h-1 to 7713 ± 324 L m-2·h-1, and thus has a potential to be used in purification of reclaimed water and separation of oil from water.
Collapse
Affiliation(s)
- Fei Sun
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
| | - Shih-Yu Huang
- Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China
| | - Yue Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong 266071, China.
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong 266071, China; Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; Department of Fashion Design, Asia University, Taichung 41354, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
5
|
Nagappan S, Park SS, Kim BK, Yoo DG, Jo NJ, Lee WK, Ha CS. Synthesis and functionalisation of mesoporous materials for transparent coatings and organic dye adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj00591e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel synthesis and functionalisation of mesoporous materials, which can be used to fabricate transparent hydrophobic coatings with temperature-sensitive surface properties, and also show excellent adsorption behavior to Rhodamine B dye in water.
Collapse
Affiliation(s)
- Saravanan Nagappan
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Sung Soo Park
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Bo Kyung Kim
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Dae-Geon Yoo
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Nam-Ju Jo
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Won-Ki Lee
- Department of Polymer Engineering
- Pukyong National University
- Busan 48547
- Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
6
|
Thakur N, Sargur Ranganath A, Sopiha K, Baji A. Thermoresponsive Cellulose Acetate-Poly(N-isopropylacrylamide) Core-Shell Fibers for Controlled Capture and Release of Moisture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29224-29233. [PMID: 28795559 DOI: 10.1021/acsami.7b07559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we used core-shell electrospinning to fabricate cellulose acetate-poly(N-isopropylacrylamide) (CA-PNIPAM) fibrous membranes and demonstrated the ability of these fibers to capture water from a high humid atmosphere and release it when thermally stimulated. The wettability of the fibers was controlled by using thermoresponsive PNIPAM as the shell layer. Scanning electron and fluorescence microscopes are used to investigate the microstructure of the fibers and confirm the presence of the core and shell phases within the fibers. The moisture capturing and releasing ability of these core-shell CA-PNIPAM fibers was compared with those of the neat CA and neat PNIPAM fibers at room temperature as well as at an elevated temperature. At room temperature, the CA-PNIPAM core-shell fibers are shown to have the maximum moisture uptake capacity among the three samples. The external temperature variations which trigger the moisture response behavior of these CA-PNIPAM fibers fall within the range of typical day and night cycles of deserts, demonstrating the potential use of these fibers for water harvesting applications.
Collapse
Affiliation(s)
- Neha Thakur
- Division of Engineering Product Development, Singapore University of Technology and Design (SUTD) , 8 Somapah Rd, 487372, Singapore
| | - Anupama Sargur Ranganath
- Division of Engineering Product Development, Singapore University of Technology and Design (SUTD) , 8 Somapah Rd, 487372, Singapore
| | - Kostiantyn Sopiha
- Division of Engineering Product Development, Singapore University of Technology and Design (SUTD) , 8 Somapah Rd, 487372, Singapore
| | - Avinash Baji
- Division of Engineering Product Development, Singapore University of Technology and Design (SUTD) , 8 Somapah Rd, 487372, Singapore
| |
Collapse
|