1
|
Jia C, Guo J, Hu Y, Li T, Zhou T, Liang X, Wang S. Synthesis of multifunctional magnetic mesoporous Fe3O4@MSN@PPy-HA nanospheres for pH-responsive drug release and photothermal in tumor therapy. Colloids Surf A Physicochem Eng Asp 2023; 675:132077. [DOI: 10.1016/j.colsurfa.2023.132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
2
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
3
|
Mu X, Chang Y, Bao Y, Cui A, Zhong X, Cooper GB, Guo A, Shan G. Core-satellite nanoreactors based on cationic photosensitizer modified hollow CuS nanocage for ROS diffusion enhanced phototherapy of hypoxic tumor. BIOMATERIALS ADVANCES 2023; 145:213263. [PMID: 36623354 DOI: 10.1016/j.bioadv.2022.213263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023]
Abstract
Photodynamic therapy (PDT) efficiency is directly affected by the reactive oxygen species (ROS) generated by photosensitizers. However, ROSs' ultrashort life span and limited diffusion distance restrict the PDT efficiency. Therefore, it is important to control the delivery strategy of photosensitizers for PDT treatment. Herein, the core-satellite nanoreactors were fabricated with oxygen generation and ROS diffusion properties. The hollow CuS encapsulating horseradish peroxidase (HRP) was combined with the cationic photosensitizers (PEI-Ce6). The unique photosensitizers delivery strategy makes the nanoreactors achieve ROS diffusion-enhanced PDT effect. First, HRP in "core" (HRP@CuS) can decompose hydrogen peroxide (H2O2) to O2, increasing O2 levels on the surface of the nanoreactor. Second, the Ce6 molecules covalent-linked with PEI are uniformly dispersed on the surface of CuS as a "satellite", avoiding Ce6 aggregation and causing more Ce6 molecules be activated to produce more 1O2. Due to the Ce6 was on the surface of the CuS nanocages, the generated ROS may ensure a larger diffusion range. Meanwhile, the inherently CuS nanocages exhibit photothermal and photoacoustic (PA) effect. The photothermal effect further enhances the ROS diffusion. Under the guidance of PA imaging, nanoreactors exhibit highly efficient hypoxic tumor ablation via photodynamic and photothermal effect. Overall, the core-satellite nanoreactors provide an effective strategy for tumor therapy, further promoting the research of photosensitizers delivery.
Collapse
Affiliation(s)
- Xin Mu
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, 5268 Renmin Road, Changchun 130024, China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, Jilin, China
| | - Ying Bao
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Anni Cui
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, 5268 Renmin Road, Changchun 130024, China
| | - Xiahua Zhong
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, 5268 Renmin Road, Changchun 130024, China
| | - Griffin B Cooper
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Anika Guo
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Guiye Shan
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, 5268 Renmin Road, Changchun 130024, China.
| |
Collapse
|
4
|
Muhsen MM, Al-Jawad SMH, Taha AA. NIR laser-conjugated glutathione-coated Mn-doped CuS nanoprisms as photothermal agent for cancer treatment. Lasers Med Sci 2022; 38:15. [PMID: 36550257 DOI: 10.1007/s10103-022-03668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022]
Abstract
The cancer treatment by laser-conjugated nanomaterial has become a new developing trend due of their unique physicochemical performance. The previous few studies reported the preparation of undoped CuS nanoprisms. The current research was concerned with the Mn doping effect on the CuS nanoprisms and its activity in tumor toxicity of M.D. Anderson-Metastatic Breast 231 (MDA-MB-231) cell line with laser treatment. To prepare a novel CuS and Mn-doped CuS nanoprisms with high surface area by two-phase colloidal method, copper nitrate and sulfur powder were used as sources of copper and sulfur respectively. The prepared nanoprisms were investigated as antibacterial and photothermal agents in MDA-MB-231 cancer treatment using near-infrared (NIR) laser. The Mn-CuS nanoprisms were modified with glutathione (GSH) to decrease the cytotoxicity and increase the biocompatibility. The characterization of synthesized nanoprisms involved the structural, compositional, surface charges, optical, and morphological property analyses. X-ray diffraction (XRD) showed the peaks of hexagonal covellite copper sulfide nanoparticles and additional diffraction peaks at Mn-CuS which are assigned to orthorhombic chalcocite CuS. The transmission electron microscopy (TEM) images showed that the CuS and Mn-CuS nanoparticles have nanoprism morphology. The antibacterial activity test revealed that the activity enhances by doping and the prepared Mn-CuS nanostructures were more effective against the Staphylococcus aureus and Escherichia coli bacteria. The results of photothermal treatment indicated that the cancer cells were effectively killed and the GSH@Mn-CuS nanoprisms are able to be used as an efficient theranostic agent for tumor photothermal therapy in the future.
Collapse
Affiliation(s)
- Mustafa M Muhsen
- Applied Physics Department, School of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Selma M H Al-Jawad
- Applied Physics Department, School of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Ali A Taha
- Biotechnology Department, School of Applied Sciences, University of Technology, Baghdad, Iraq
| |
Collapse
|
5
|
Muhsen MM, Al-Jawad SMH, Taha AA. Gum Arabic-modified Mn-doped CuS nanoprisms for cancer photothermal treatment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Zheng Z, Yu P, Cao H, Cheng M, Zhou T, Lee LE, Ulstrup J, Zhang J, Engelbrekt C, Ma L. Starch Capped Atomically Thin CuS Nanocrystals for Efficient Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103461. [PMID: 34672082 DOI: 10.1002/smll.202103461] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Photothermal therapy requires efficient plasmonic nanomaterials with small size, good water dispersibility, and biocompatibility. This work reports a one-pot, 2-min synthesis strategy for ultrathin CuS nanocrystals (NCs) with precisely tunable size and localized surface plasmon resonance (LSPR), where a single-starch-layer coating leads to a high LSPR absorption at the near-IR wavelength 980 nm. The CuS NC diameter increases from 4.7 (1 nm height along [101]) to 28.6 nm (4.9 nm height along [001]) accompanied by LSPR redshift from 978 to 1200 nm, as the precursor ratio decreases from 1 to 0.125. Photothermal temperature increases by 38.6 °C in 50 mg L-1 CuS NC solution under laser illumination (980 nm, 1.44 W cm-2 ). Notably, 98.4% of human prostate cancer PC-3/Luc+ cells are killed by as little as 5 mg L-1 starch-coated CuS NCs with 3-min laser treatment, whereas CuS NCs without starch cause insignificant cell death. LSPR modeling discloses that the starch layer enhances the photothermal effect by significantly increasing the free carrier density and blue-shifting the LSPR toward 980 nm. This study not only presents a new type of photothermally highly efficient ultrathin CuS NCs, but also offers in-depth LSPR modeling investigations useful for other photothermal nanomaterial designs.
Collapse
Affiliation(s)
- Zhiyong Zheng
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Ping Yu
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Huili Cao
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Mengyu Cheng
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Taiyuan, 030001, P. R. China
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Thomas Zhou
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Li E Lee
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Christian Engelbrekt
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Lixin Ma
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| |
Collapse
|
7
|
Jia C, Liu H, Hu Y, Wu H, Zhu C, Zhang Y, Wang S, Huang M. NIR‐Responsive Fe 3O 4@MSN@PPy‐PVP Nanoparticles as the Nano‐Enzyme for Potential Tumor Therapy. ChemistrySelect 2021; 6:6564-6573. [DOI: 10.1002/slct.202101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022]
Abstract
AbstractAmong various kinds of photothermal conversion materials, polypyrrole (PPy) has attracted ever‐increasing attention because of its good biocompatibility and excellent near‐infrared light response property. In this research, the core‐shell nanoparticles with magnetic Fe3O4 as the core and mesoporous silica (MSN) as the shell were prepared, the resulted Fe3O4@MSN nanoparticles were then surface coated with a layer of PPy and further modified with polyvinylpyrrolidone (PVP) to gain colloidal stability. The Fe2+ in Fe3O4 can catalyze the decomposition of H2O2 in tumor cells to produce cytotoxic hydroxyl radicals, thus realizing the tumor chemodynamic therapy. Meanwhile, the MSN layer gives the nanoparticles a higher drug loading capacity of chemotherapeutics (doxorubicin, DOX). Therefore, the prepared Fe3O4@MSN@PPy‐PVP nanoparticles not only have good biocompatibility, magnetism and colloidal stability but also can realize the combined tumor photothermal, chemo, and chemodynamic therapy. This study demonstrates the rational design of multifunctional nanoplatforms for biomedical applications.
Collapse
Affiliation(s)
- Chengzheng Jia
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Huiwen Liu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Yunxia Hu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital Second Military Medical University No. 168 Changhai Road Shanghai 200433 P.R. China
| | - Chunping Zhu
- Department of Gastroenterology, Changhai Hospital Second Military Medical University No. 168 Changhai Road Shanghai 200433 P.R. China
| | - Yuxuan Zhang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Shige Wang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Mingxian Huang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| |
Collapse
|
8
|
Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal-Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007073. [PMID: 33710754 DOI: 10.1002/smll.202007073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.
Collapse
Affiliation(s)
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Homa Gheybi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, 53318-17634, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, 80131, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
9
|
Behzadpour N, Ranjbar A, Azarpira N, Sattarahmady N. Development of a Composite of Polypyrrole-Coated Carbon Nanotubes as a Sonosensitizer for Treatment of Melanoma Cancer Under Multi-Step Ultrasound Irradiation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2322-2334. [PMID: 32522457 DOI: 10.1016/j.ultrasmedbio.2020.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Sonodynamic therapy (SDT) has established a novel route for treating solid cancers. Low-intensity ultrasound irradiation accompanied by a sonosensitizer has revealed remarkable advantages for cancer therapy such as targeted uptake, access to deeper tumors, insignificant side effects and invasiveness, compared with other therapeutic methods. In this study, we scrutinized synthesis and characterization of a polypyrrole-coated multi-walled carbon nanotubes composite (PPy@MWCNTs). PPy@MWCNTs can absorb ultrasound irradiation by both of its components, and it was introduced as a new sonosensitizer. The composite was characterized by field emission scanning electron microscopy (FESEM), and its ability to temperature elevation was explored. FESEM images revealed that PPy@MWCNTs comprised nanotubes of 36.3 ± 5.1 nm in diameter with up to several micrometer in length. Ultrasound irradiation at 1 MHz and 1.0 W cm-2 for 60 s in four steps led to an efficient SDT in vitro (16.3 ± 2.8°C temperature increment for 250 μg mL-1 of PPy@MWCNTs), in C540 (B16/F10) cell line and a melanoma tumor model in male balb/c mice. In vitro examinations revealed that PPy@MWCNTs represented a concentration-dependent cytotoxicity on multi-step ultrasound irradiation (a cell viability of 8.9% for 250 μg mL-1 of PPy@MWCNTs). Histologic analyses and tumor volume decrement after 10 d revealed detrimental SDT effects of PPy@MWCNTs on tumors (75% necrosis and 50% decrement in tumor volume). Thermal effects and reactive oxygen species generation were the reasons of the working function of PPy@MWCNTs in SDT.
Collapse
Affiliation(s)
- Niloufar Behzadpour
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aliyeh Ranjbar
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Behzadpour N, Akbari N, Sattarahmady N. Photothermal inactivation of methicillin-resistant Staphylococcus aureus: anti-biofilm mediated by a polypyrrole-carbon nanocomposite. IET Nanobiotechnol 2019; 13:800-807. [PMID: 31625519 PMCID: PMC8676018 DOI: 10.1049/iet-nbt.2018.5340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/01/2019] [Accepted: 02/07/2019] [Indexed: 04/05/2024] Open
Abstract
Widespread resistance to antibiotics amongst pathogens has become a tremendous challenge of high morbidity and mortality rates which increases the needs to exploring novel methods of treatment. An efficient antimicrobial procedure to root out pathogenic bacteria is photothermal therapy. In this study, antimicrobial effects of a polypyrrole-carbon nanocomposite (PPy-C) upon laser irradiation in order to destroy the pathogenic gram-positive bacterium, methicillin-resistant Staphylococcus aureus (MRSA) were assessed. The bacterial cells were incubated with 500, 750 and 1000 μg ml-1 concentrations of PPy-C and irradiated with an 808-nm laser at a power density of 1.0 W cm-2. To indicate the biocompatibility and toxic effect of the nanocomposite without and with laser irradiation, the authors counted the number of CFUs and compared it to an untreated sample. Antibacterial mechanisms of PPy-C were assessed through temperature increment, reactive oxygen species production, and protein and DNA leakages. Photothermal heating assay showed that 26°C temperature increases in the presence of 1000 µg ml-1 PPy-C led to >98% killing of MRSA. Furthermore, 20 min radiation of near-infrared light to PPy-C in different concentrations indicated destruction and reduction in the MRSA biofilm formation. Therefore, PPy-C was introduced as a photothermal absorber with a bactericidal effect in MRSA.
Collapse
Affiliation(s)
- Niloufar Behzadpour
- Department of Medical Physics, School of Medicine, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Akbari
- Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Liu Y, Yu Q, Chang J, Wu C. Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. NANOSCALE 2019; 11:13678-13708. [PMID: 31292580 DOI: 10.1039/c9nr02955a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanobiomaterials have attracted tremendous attention in the biomedical field. Especially in the past few years, a large number of low dimensional nanobiomaterials, including 0D nanostructures, 1D nanotubes and 2D nanosheets, were employed for tumor therapy due to their optically triggered tumor therapy effects and drug loading capacities. However, these low dimensional nanobiomaterials cannot support cell adhesion and possess poor tissue regeneration ability, thus they are not suitable for application in regenerative medicine. Three dimensional (3D) nanofiber scaffolds have attracted extensive attention in tissue regeneration, including bone, skin, nerve and cardiac tissues, due to their similar extracellular matrix structures. Additionally, many 3D scaffolds displayed bone and cartilage regeneration abilities. Therefore, to obtain materials with both tumor therapy and tissue regeneration abilities, it is meaningful and necessary to develop 3D nanobiomaterials with multifunctions. In this review, we systematically review the research progress of nanobiomaterials with varied dimensional structures including 0D, 1D, 2D and 3D, as well as evolutional functions from single tumor therapy to simultaneous tumor therapy and tissue regeneration. This review may pave the way for developing an interdisciplinary research of nanobiomaterials in combination of tumor therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingqing Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Li M, Wang Y, Lin H, Qu F. Hollow CuS nanocube as nanocarrier for synergetic chemo/photothermal/photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:591-598. [DOI: 10.1016/j.msec.2018.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/09/2018] [Accepted: 11/17/2018] [Indexed: 12/14/2022]
|
13
|
Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2193-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Chen W, Xie Y, Hu C, Zeng T, Jiang H, Qiao F, Gu J, Dong X, Zhao X. Room temperature synthesis of aqueous soluble covellite CuS nanocrystals with high photothermal conversion. CrystEngComm 2018. [DOI: 10.1039/c8ce00644j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Generating aqueous soluble covellite CuS nanocrystals with well-defined NIR plasmon absorbance by reacting Cu2+ with S2− ions via a facile and scalable protocol at room temperature, in the presence of various ligands.
Collapse
Affiliation(s)
- Wenhui Chen
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology (WUT)
- Wuhan 430070
- P. R. China
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology (WUT)
- Wuhan 430070
- P. R. China
| | - Chao Hu
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology (WUT)
- Wuhan 430070
- P. R. China
| | - Tao Zeng
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology (WUT)
- Wuhan 430070
- P. R. China
- School of Materials Science and Engineering
| | - Huirong Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology (WUT)
- Wuhan 430070
- P. R. China
| | - Fen Qiao
- School of Energy & Power Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Jiani Gu
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology (WUT)
- Wuhan 430070
- P. R. China
| | - Xunyi Dong
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology (WUT)
- Wuhan 430070
- P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology (WUT)
- Wuhan 430070
- P. R. China
| |
Collapse
|