1
|
Sun R, Miao X, Jiang Q, Fan X, Chen Y, Mai Z, Li K, Chen T. Rapid and Sensitive Detection of the MYD88 L265P Mutation for Lymphoplasmocytic Lymphoma/Waldenström's Macroglobulinemia via CRISPR-Cas12a. Hematol Oncol 2025; 43:e70059. [PMID: 40135663 DOI: 10.1002/hon.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/23/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Affiliation(s)
- Rumei Sun
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., Guangzhou, China
| | - Xiaping Miao
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., Guangzhou, China
| | - Qingyang Jiang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xijie Fan
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., Guangzhou, China
| | - Yuxin Chen
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Zhiying Mai
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Kaimin Li
- Department of Blood, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Tao Chen
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| |
Collapse
|
2
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Concentration-Dependent Study of Nucleic Acid Blockers Used for Sequence-Specificity Enhancement in Nucleic Acids Detection. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Tang W, Zhang Y, Wang J, Zhao Y, Xu X, Liu C, Liu Y, Zhang X. High-Selectivity Single-Nucleotide Variant Capture Technology Based on the DNA Reaction Network. Anal Chem 2022; 94:5838-5845. [PMID: 35385254 DOI: 10.1021/acs.analchem.1c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extremely low abundance of circulating tumor DNA in blood samples has limited the development of liquid biopsy techniques for the early diagnosis of major diseases. In this study, we demonstrate a DRN-based screening technique, SCREEN, which achieves the specific capture and enrichment of low abundance SNV nucleic acid samples without selective amplification. The SCREEN technique achieved a 108-fold increase in the abundance of single-nucleotide variant (SNV) nucleic acids from highly homologous mixtures (from 0.01% to 1.08%) and has been shown to significantly increase the abundance of SNV nucleic acids from 0.1% to 51% further through two rounds of capture. As a highly effective pre-enrichment technique, SCREEN has demonstrated the ability to enhance NGS in detecting an ultralow abundance SNV nucleic acid powerfully and has high compatibility with existing molecular diagnostic methods.
Collapse
Affiliation(s)
- Weiyang Tang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060.,School of Chemistry Science and Engineering, Tongji University, Shanghai, China, 200092
| | - Yibin Zhang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Jiachun Wang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Yi Zhao
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Xiaoling Xu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Conghui Liu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Yizhen Liu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Xueji Zhang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| |
Collapse
|
5
|
Takehana S, Murata Y, Jo JI, Tabata Y. Complexation design of cationized gelatin and molecular beacon to visualize intracellular mRNA. PLoS One 2021; 16:e0245899. [PMID: 33493232 PMCID: PMC7833158 DOI: 10.1371/journal.pone.0245899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to prepare cationized gelatin-molecular beacon (MB) complexes for the visualization of intracellular messenger RNA (mRNA). The complexes were prepared from cationized gelatins with different extents of cationization and different mixing ratios of MB to cationized gelatin. The apparent size of complexes was almost similar, while the zeta potential was different among the complexes. Irrespective of the preparation conditions, the complexes had a sequence specificity against the target oligonucleotides in hybridization. The cytotoxicity and the amount of complexes internalized into cells increased with an increase in the cationization extent and the concentration of cationized gelatin. After the incubation with complexes prepared from cationized gelatin with the highest extent of cationization and at mixing ratios of 10 and 20 pmole MB/μg cationized gelatin, a high fluorescent intensity was detected. On the other hand, the complex prepared with the mixing ratio at 20 pmole/μg did not show any cytotoxicity. The complex was the most effective to visualize the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA endogenously present. In addition, even for enhanced green fluorescent protein (EGFP) mRNA exogenously transfected, the complex permitted to effectively detect it as well. It is concluded that both the endogenous and exogenous mRNA can be visualized in living cells by use of cationized gelatin-MB complexes designed.
Collapse
Affiliation(s)
- Sho Takehana
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Murata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
6
|
Tan Y, Zhong W, Tang W, Fan J, Zhang X, Guo D, Wu X, Liu Y. Improvement of Molecular Diagnosis Using Domain-Level Single-Nucleotide Variants by Eliminating Unexpected Secondary Structures. Chemistry 2020; 26:16256-16260. [PMID: 32964533 DOI: 10.1002/chem.202003592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 01/06/2023]
Abstract
Identification of single-nucleotide variants (SNVs) is of great significance in molecular diagnosis. The problem that should not be ignored in the identification process is that the unexpected secondary structure of the target nucleic acid may greatly affect the detection accuracy. Herein, we proposed a conditional domain-level SNV diagnosis strategy, in which the subsequent SNV detection can only be carried out after eliminating the unexpected secondary structure of target DNA. Specifically, the target DNA is assembled into a rigid double strand, which makes folding the target DNA difficult and the unexpected secondary structure is eliminated. Based on this double-stranded structure, specially designed probes are used to detect double-stranded properties and report abundant domain-level oligonucleotide information to improve the effective information in the detection results and complete domain-level SNV diagnosis. If the unexpected secondary structure is not eliminated, the detector will first detect it and feed back to us, ensuring the accuracy of the subsequent detection results. With the occurrence (or not) of SNV and the change of the SNV site, in the proof-of-concept experiment, we successfully identified the four homologous sequences to be tested related to BRAF gene.
Collapse
Affiliation(s)
- Yun Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Weiye Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Weiyang Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Jin Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Xiaohui Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Donghua Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Xiaolong Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| |
Collapse
|
7
|
Liu R, Zhang S, Zheng TT, Chen YR, Wu JT, Wu ZS. Intracellular Nonenzymatic In Situ Growth of Three-Dimensional DNA Nanostructures for Imaging Specific Biomolecules in Living Cells. ACS NANO 2020; 14:9572-9584. [PMID: 32806042 DOI: 10.1021/acsnano.9b09995] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Real-time in situ monitoring of low-abundance cancer biomarkers (e.g., miRNAs and proteins) in living cells by nonenzymatic assembly entirely from original DNA probes remains unexplored due to an extremely complex intracellular environment. Herein, a nonenzymatic palindrome-catalyzed DNA assembly (NEPA) technique is developed to execute the in situ imaging of intracellular miRNAs by assembling a three-dimensional nanoscale DNA spherical structure (NS) with low mobility from three free hairpin-type DNAs rather than from DNA intermediates based on the interaction of designed terminal palindromes. Target miRNA was detected down to 1.4 pM, and its family members were distinguished with almost 100% accuracy. The subcellular localization of NS products can be visualized in real time. The NEPA-based sensing strategy is also suitable for the intracellular in situ fluorescence imaging of cancer-related protein receptors, offering valuable insight into developing sensing protocols for understanding the biological function of vital biomolecules in disease pathogenesis and future therapeutic applications.
Collapse
Affiliation(s)
- Ran Liu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Ting-Ting Zheng
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jing-Ting Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
8
|
Zhao Y, Feng Y, Zhang Y, Xia P, Xiao Z, Wang Z, Yan H. Combining competitive sequestration with nonlinear hybridization chain reaction amplification: an ultra-specific and highly sensitive sensing strategy for single-nucleotide variants. Anal Chim Acta 2020; 1130:107-116. [PMID: 32892930 DOI: 10.1016/j.aca.2020.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Highly specific and sensitive detection of single-nucleotide variants (SNVs) is of central importance in disease diagnosis and pharmacogenomics. However, it remains a great challenge to successfully detect very low amounts of mutant SNV sequences in real samples in which a SNV sequence may be surrounded by high levels of closely related wild-type sequences. Herein, we propose an ultra-specific and highly sensitive SNV sensing strategy by combining the competitive sequestration with the nonlinear hybridization chain reaction (HCR) amplification. The rationally designed sequestration hairpin can effectively sequester the large amount of wild-type sequence and thus dramatically improve the hybridization specificity in recognizing SNVs. To improve the detection sensitivity, a new fluorescent signal probe is fabricated by intercalating SYBR Green I dye into the nonlinear HCR based DNA dendrimer to further bind with SNVs for signal amplification. The hyperbranched DNA dendrimer possesses large numbers of DNA duplexes for dye intercalation, thus the signal probe shows strong fluorescence intensity, leading to large fluorescence signal amplification. Taking advantage of the improved hybridization specificity of the competitive sequestration and the enhanced fluorescence response of the nonlinear HCR amplification, the developed sensing strategy enables ultra-specific and highly sensitive detection of SNVs. Taking human pancreatic cancers and colorectal carcinomas related KRAS gene mutations as models, the developed strategy shows remarkably high specificity against 17 SNVs (discrimination factors ranged from 126 to 1001 with a median of 310), and achieves high sensitivity for 6 KRAS mutations (the best resultant detection limit reached 15 pM for KRAS G13D (c.38G > A)). Notably, combined with PCR amplification, our SNV sensing strategy could detect KRAS G12D (c.35G > A) from extracted human genomic DNA samples at abundance as low as 0.05%. This work expands the rule set of designing specific and sensitive SNV sensing strategies and shows promising potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhao
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Yuanbo Feng
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yuanbo Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Pu Xia
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Zihan Xiao
- Queen Mary University of London Engineering School, NPU, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ziheng Wang
- Queen Mary University of London Engineering School, NPU, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
9
|
Kim KT, Winssinger N. Enhanced SNP-sensing using DNA-templated reactions through confined hybridization of minimal substrates (CHOMS). Chem Sci 2020; 11:4150-4157. [PMID: 34122878 PMCID: PMC8152519 DOI: 10.1039/d0sc00741b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
DNA or RNA templated reactions are attractive for nucleic acid sensing and imaging. As for any hybridization-based sensing, there is a tradeoff between sensitivity (detection threshold) and resolution (single nucleotide discrimination). Longer probes afford better sensitivity but compromise single nucleotide resolution due to the small thermodynamic penalty of a single mismatch. Herein we report a design that overcomes this tradeoff. The reaction is leveraged on the hybridization of a minimal substrate (covering 4 nucleotides) which is confined by two guide DNAs functionalized respectively with a ruthenium photocatalyst. The use of a catalytic reaction is essential to bypass the exchange of guide DNAs while achieving signal amplification through substrate turnover. The guide DNAs restrain the reaction to a unique site and enhance the hybridization of short substrates by providing two π-stacking interactions. The reaction was shown to enable the detection of SNPs and SNVs down to 50 pM with a discrimination factor ranging from 24 to 309 (median 82, 27 examples from 3 oncogenes). The clinical diagnostic potential of the technology was demonstrated with the analysis of RAS amplicons obtained directly from cell culture.
Collapse
Affiliation(s)
- Ki Tae Kim
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva 30 quai Ernest Ansermet 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva 30 quai Ernest Ansermet 1211 Geneva Switzerland
| |
Collapse
|
10
|
|
11
|
Tang W, Zhong W, Tan Y, Wang GA, Li F, Liu Y. DNA Strand Displacement Reaction: A Powerful Tool for Discriminating Single Nucleotide Variants. Top Curr Chem (Cham) 2020; 378:10. [PMID: 31894426 DOI: 10.1007/s41061-019-0274-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023]
Abstract
Single-nucleotide variants (SNVs) that are strongly associated with many genetic diseases and tumors are important both biologically and clinically. Detection of SNVs holds great potential for disease diagnosis and prognosis. Recent advances in DNA nanotechnology have offered numerous principles and strategies amenable to the detection and quantification of SNVs with high sensitivity, specificity, and programmability. In this review, we will focus our discussion on emerging techniques making use of DNA strand displacement, a basic building block in dynamic DNA nanotechnology. Based on their operation principles, we classify current SNV detection methods into three main categories, including strategies using toehold-mediated strand displacement reactions, toehold-exchange reactions, and enzyme-mediated strand displacement reactions. These detection methods discriminate SNVs from their wild-type counterparts through subtle differences in thermodynamics, kinetics, or response to enzymatic manipulation. The remarkable programmability of dynamic DNA nanotechnology also allows the predictable design and flexible operation of diverse strand displacement probes and/or primers. Here, we offer a systematic survey of current strategies, with an emphasis on the molecular mechanisms and their applicability to in vitro diagnostics.
Collapse
Affiliation(s)
- Weiyang Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Weiye Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yun Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Guan A Wang
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Feng Li
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada. .,College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China. .,Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Dong Y, Yao C, Wang Z, Luo D, Yang D. Target-Triggered Polymerization of Branched DNA Enables Enzyme-free and Fast Discrimination of Single-Base Changes. iScience 2019; 21:228-240. [PMID: 31675552 PMCID: PMC6838547 DOI: 10.1016/j.isci.2019.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023] Open
Abstract
Single-base changes lead to important biological and biomedical implications; however, the discrimination of single-base changes from normal DNA always remains a grand challenge. Herein we developed a DNA recognition and amplification system based on artificial branched DNA, namely, target-triggered polymerization (TTP), to realize enzyme-free and fast discrimination of single-base changes. Branched DNA as monomers rapidly polymerized into DNA nanospheres only with the trigger of specific DNA. Our TTP system worked reliably over a wide range of conditions. Remarkably, our TTP system was capable of discriminating base-changing DNA from normal DNA, including distinguishing 1-4 nucleotide changes and positions of single base, which was attributed to the significant amplification of small differences in hybridization thermodynamics and kinetics. We further proposed a theoretical method for calculating the hybridization probability of nucleic acids, which performed highly consistent with experimental results.
Collapse
Affiliation(s)
- Yuhang Dong
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zhi Wang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
13
|
Oladepo SA, Yusuf BO. Detection of Several Homologous MicroRNAs by a Single Smart Probe System Consisting of Linear Nucleic Acid Blockers. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24203691. [PMID: 31615053 PMCID: PMC6832958 DOI: 10.3390/molecules24203691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 11/13/2022]
Abstract
We report a universal smart probe (SP) that is capable of detecting several homologous let-7 microRNAs (miRNAs). While the SP is complementary to let-7a, and therefore, strongly binds to this target, due to sequence homology, the SP also has equal propensity to non-specifically hybridize with let-7b and let-7c, which are homologous to let-7a. The fluorescence signal of the SP was switched off in the absence of any homologous member target, but the signal was switched on when any of the three homologous members was present. With the assistance of nucleic acid blockers (NABs), this SP system can discriminate between homologous miRNAs. We show that the SP can discriminate between let-7a and the other two sequences by using linear NABs (LNABs) to block non-specific interactions between the SP and these sequences. We also found that LNABs used do not cross-react with the let-7a target due to the low LNABs:SP molar ratio of 6:1 used. Overall, this SP represents a universal probe for the recognition of a homologous miRNA family. The assay is sensitive, providing a detection limit of 6 fmol. The approach is simple, fast, usable at room temperature, and represents a general platform for the in vitro detection of homologous microRNAs by a single fluorescent hairpin probe.
Collapse
Affiliation(s)
- Sulayman A Oladepo
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
14
|
Zhao Y, Fang X, Chen F, Bai M, Fan C, Zhao Y. Locus-patterned sequence oriented enrichment for multi-dimensional gene analysis. Chem Sci 2019; 10:8421-8427. [PMID: 31803421 PMCID: PMC6844269 DOI: 10.1039/c9sc02496d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 11/21/2022] Open
Abstract
Multi-dimensional gene analysis provides in-depth insights into gene sequence, locus variations and molecular abundance, whereas it is vulnerable to the perturbation of complex reaction networks and always compromises on the discrimination of analogous sequences. Here, we present a sequence oriented enrichment method patterned by the prescribed locus without crosstalk between concurrent reactions. Energetically favourable structures of nucleic acid probes are theoretically derived and oriented to a specific gene locus. We designed a pair of universal probes for multiple conserved loci to avoid side reactions from undesired interactions among increased probe sets. Furthermore, competitive probes were customized to sink analogues for differentiating the reaction equilibrium and kinetics of sequence enrichment from the target, so variant loci can be synchronously identified with nucleotide-level resolution. Thus, the gene locus guides sequence enrichment and combinatorial signals to create unique codes, which provides access to multidimensional and precise information for gene decoding.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science , Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| | - Xiaoxing Fang
- Institute of Analytical Chemistry and Instrument for Life Science , Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science , Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science , Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Institute of Molecular Medicine , Renji Hospital , School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science , Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| |
Collapse
|
15
|
Peng M, Fang Z, Na N, Ouyang J. A versatile single-molecule counting-based platform by generation of fluorescent silver nanoclusters for sensitive detection of multiple nucleic acids. NANOSCALE 2019; 11:16606-16613. [PMID: 31460540 DOI: 10.1039/c9nr04608a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The good photostability and strong brightness of individual DNA-templated silver nanoclusters (DNA-AgNCs) have been confirmed by single-molecule imaging in this work and DNA-AgNCs as a new class of outstanding fluorophores are applied in the construction of single-molecule counting-based probes for the first time. Based on the fluorescent AgNC-generating molecular beacons (AgNC-MBs), we present a versatile method for simultaneous analysis of multiple nucleic acids. Distinct from previous designs in which a AgNC stabilizing sequence is incorporated into the stem of a hairpin DNA to form the AgNC-MB, we prepared a nicked MB in which the AgNC stabilizing sequence is hybridized with the longer stem of a single-stranded DNA (ssDNA) with a stem-loop structure. Our proposed AgNC-MB is activated by probe-target hybridization then releasing the AgNC stabilizing sequence via a toehold-mediated strand displacement reaction, the versatility of which has been greatly improved because bases in the target-binding region are not involved in the formation of DNA-AgNCs. As a proof of concept, the simultaneous detection of two breast cancer-related MicroRNAs (miR-21 and let-7a miRNA) has been achieved with total internal reflection fluorescence (TIRF)-based imaging and the detection sensitivity of our method has been demonstrated to be improved by at least two orders of magnitude compared with conventional AgNC-MBs. Furthermore, in the single-nucleotide mutation identification assay, the simultaneous detection strategy introduces a competitive reaction between the two probe-target hybridizations, resulting in the excellent discrimination ability of the AgNC-MB sensing platform and the mutant-type targets can be successfully detected at low abundance. The new AgNC-MB sensing platform demonstrated potential to make AgNCs an attractive alternative to conventional organic dyes for single-molecule studies.
Collapse
Affiliation(s)
- Manshu Peng
- State Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Zhuyin Fang
- State Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- State Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- State Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
16
|
Wu F, Lin Q, Wang L, Zou Y, Chen M, Xia Y, Lan J, Chen J. A DNA electrochemical biosensor based on triplex DNA-templated Ag/Pt nanoclusters for the detection of single-nucleotide variant. Talanta 2019; 207:120257. [PMID: 31594620 DOI: 10.1016/j.talanta.2019.120257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/24/2023]
Abstract
A label-free electrochemical biosensor based on the triplex DNA-templated Ag/Pt bimetallic nanoclusters (triplex-Ag/PtNCs) and locked nucleic acid (LNA) modified X-shaped DNA probe was developed for the detection of single-nucleotide variant (SNV) related to β-thalassemia. Firstly, using triplex DNA as template, a site-specific and homogeneous Ag/PtNCs was prepared, which can effectively catalyze the 3,3,5,5-tetramethylbenzidine-H2O2 system and thus be employed as a signal reporter in the field of electrochemical biosensor. Secondly, the LNA modified X-shaped probes were assembled on gold electrode surface, which can only be dissociated in the presence of target, leading to the hybridization with triplex-Ag/PtNCs and significant increase of current signal. In this way, the detection limit for SNV of β-thalassemia was 0.8 fM with variant allele frequency (VAF) as low as 0.0001%.
Collapse
Affiliation(s)
- Fang Wu
- Department of Basic Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Qian Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Liangliang Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Yulian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Mei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Yaokun Xia
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Jianming Lan
- Department of Basic Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China.
| |
Collapse
|
17
|
Abstract
Advances in nucleic acid sequencing and genotyping technologies have facilitated the discovery of an increasing number of single-nucleotide variations (SNVs) associated with disease onset, progression, and response to therapy. The reliable detection of such disease-specific SNVs can ensure timely and effective therapeutic action, enabling precision medicine. This has driven extensive efforts in recent years to develop novel methods for the fast and cost-effective analysis of targeted SNVs. In this Review, we highlight the most recent and significant advances made toward the development of such methodologies.
Collapse
Affiliation(s)
- Alireza Abi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Afsaneh Safavi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| |
Collapse
|
18
|
Oladepo SA, Yusuf BO. Simple protocol for sequence-specific detection of mixed-base nucleic acids using a smart probe with NABs. Anal Biochem 2019; 568:53-56. [PMID: 30610841 DOI: 10.1016/j.ab.2018.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 12/30/2018] [Indexed: 10/27/2022]
Abstract
A fluorescent smart probe (SP) was used to detect a mixed-base ribonucleic acids sequence. While the SP presents excellent sensitivity for the target, it gives subtle discrimination between the perfect target sequence and several mismatch sequences. Its sequence-specificity for the target was greatly enhanced by using nucleic acid blockers (NABs), which are unlabeled, non-fluorescent hairpin oligonucleotides that are perfectly complementary to those mismatch sequences. This approach is simple, feasible at room temperature, requires no amplification enzymes, and it is suitable for applications requiring routine nucleic acids sequence detection and quantification methods such as genetic testing and biomedical diagnostics.
Collapse
Affiliation(s)
- Sulayman A Oladepo
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
19
|
Xu J, Fu Y, Xiao Y. Endonuclease IV recognizes single base mismatch on the eighth base 3' to the abasic site in DNA strands for ultra-selective and sensitive mutant-type DNA detection. RSC Adv 2018; 8:27016-27020. [PMID: 35540020 PMCID: PMC9083296 DOI: 10.1039/c8ra04552f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/25/2023] Open
Abstract
Since single nucleotide polymorphism (SNP) is related with many diseases and drug metabolic polymorphous and SNP genotyping is rising rapidly in many biological and medical areas, various methods of discriminating SNPs have been developed, one of which is an enzyme-based method. We uncovered a unique property of endonuclease IV due to which it can discriminate single base mismatches in different positions of DNA strands containing an abasic site, and we also discovered a new property: a mismatch in the +8 position could inhibit the cleavage of endonuclease IV. Then, we coupled +8 mismatch with other mismatches along with the discrimination effect of melting temperature to develop a new ultra-selective and sensitive genotyping system, which showed high discrimination factors. The detection limit was as low as 0.05-0.01%. Our new discovery improves the understanding of endonuclease IV. Also, the method could be applied to clinical real samples; thus, it merits further investigation and improvement for application in clinical utilization for early screening of specific diseases.
Collapse
Affiliation(s)
- Jiaju Xu
- Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology Wuhan 430030 P. R. China
| | - Yanqiao Fu
- Department of Otorhinolaryngology, Taihe Hospital, Hubei University of Medicine Shiyan 442000 P. R. China
| | - Yan Xiao
- Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology Wuhan 430030 P. R. China
| |
Collapse
|
20
|
Li Z, Zhou X, Li L, Liu S, Wang C, Li L, Yu C, Su X. Probing DNA Hybridization Equilibrium by Cationic Conjugated Polymer for Highly Selective Detection and Imaging of Single-Nucleotide Mutation. Anal Chem 2018; 90:6804-6810. [PMID: 29766713 DOI: 10.1021/acs.analchem.8b00870] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hybridization-based probes emerge as a promising tool for nucleic acid target detection and imaging. However, the single-nucleotide selectivity is still challenging because the specificity of hybridization reaction is typically low at room temperature. We disclose an effective and simple method for highly selective detection and in situ imaging of single-nucleotide mutation (SNM) by taking the advantages of the specific hybridization of short duplex and the signal amplifying effect of cationic conjugated polymer (CCP). Excellent discrimination of the nucleic acid strands only differing by single nucleotide was achieved enabling the sensitive detection of SNM at the abundance as low as 0.1%. Single-molecule fluorescence resonance energy transfer (smFRET) study reveals that the presence of CCP enhances the perfect matched duplex and the mismatched duplex to a different extent, which can be an explanation for the high single-nucleotide selectivity. Due to the simple design of the probe and the stable brightness of CCP, highly selective mRNA in situ imaging was achieved in fixed cells. Melanoma cell line A375 with BRAF V600E point mutation exhibits higher FRET efficiency than liver cancer cell line HegG2 that was not reported having the mutation at this point.
Collapse
Affiliation(s)
- Zehao Li
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xu Zhou
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Lidan Li
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shue Liu
- Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Congshan Wang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Lina Li
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Changyuan Yu
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xin Su
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
21
|
Hu S, Li N, Liu F. Combining cooperativity with sequestration: a novel strategy for discrimination of single nucleotide variants. Chem Commun (Camb) 2018. [PMID: 29528359 DOI: 10.1039/c8cc00838h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a novel strategy for the discrimination of single nucleotide variants (SNVs) by combining cooperativity with sequestration, which displays remarkably high specificity (discrimination factors ranging from 67 to 618 with a median of 194) against 12 model SNVs and can be easily integrated with PCR amplification to detect KRAS G12D mutation.
Collapse
Affiliation(s)
- Shichao Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
22
|
Zhou QY, Yuan F, Zhang XH, Zhou YL, Zhang XX. Simultaneous multiple single nucleotide polymorphism detection based on click chemistry combined with DNA-encoded probes. Chem Sci 2018; 9:3335-3340. [PMID: 29780463 PMCID: PMC5932596 DOI: 10.1039/c8sc00307f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/21/2018] [Indexed: 12/30/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are emerging as important biomarkers for disease diagnosis, prognostics and disease pathogenesis. As one type of disease is always connected to several SNP sites, there is great demand for a reliable multiple SNP detection method. Herein, we mimicked a ligation reaction based on DNA ligase and originally utilized an enzyme-free DNA template-directed click reaction for SNP detection. With 5'-alkyne and 3'-azide groups labelled on two oligonucleotide probes, the target DNA-directed Cu(i)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction produced a new DNA strand with a triazole backbone, as a mimic of a DNA phosphodiester linkage. Trace amounts of the target (as low as 25 fmol in 50 μL) could be sensitively detected using capillary gel electrophoresis with laser-induced fluorescence (CGE-LIF). Meanwhile, SNP caused an obvious difference in the efficiency of the click reaction, and 0.5% SNP could be easily detected. More importantly, multiplexed SNP detection in a one tube reaction was successfully achieved only by encoding different lengths of the DNA probes for the different SNP sites.
Collapse
Affiliation(s)
- Qian-Yu Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS) , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China . ; ; ; Tel: +86-10-62754112
| | - Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China . ; ; ; Tel: +86-10-62754112
| | - Xiao-Hui Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS) , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China . ; ; ; Tel: +86-10-62754112
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS) , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China . ; ; ; Tel: +86-10-62754112
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS) , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China . ; ; ; Tel: +86-10-62754112
| |
Collapse
|
23
|
Pei X, Lai T, Tao G, Hong H, Liu F, Li N. Ultraspecific Multiplexed Detection of Low-Abundance Single-Nucleotide Variants by Combining a Masking Tactic with Fluorescent Nanoparticle Counting. Anal Chem 2018; 90:4226-4233. [PMID: 29504392 DOI: 10.1021/acs.analchem.8b00685] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To be able to detect simultaneously multiple single-nucleotide variants (SNVs) with both ultrahigh specificity and low-abundance sensitivity is of pivotal importance for molecular diagnostics and biological research. In this contribution, we for the first time developed a multiplex SNV detection method that combines the masking tactic with fluorescent nanoparticle (FNP) counting based on the sandwich design. The method presents a rivaling performance due to its advantageous features: the masking reagent was designed to hybridize with an extremely large amount of the wild-type sequence to render the assay with high specificity; FNP counting provides a sensitive multiplexed SNV detection; the sandwich design facilitates an easy separation to make the detection free of interferences from the matrix. For single SNV target discrimination, including the 6 most frequently occurring DNA KRAS gene mutations and 2 possible RNA KRAS gene mutations as well as 11 artificial mutations, the discrimination factor ranged from 204 to 1177 with the median being 545. Among the tested 19 SNVs, abundances as low as 0.05% were successfully identified in 14 cases, and an abundance as low as 0.1% was identified for the remaining 5 cases. For multiplexed detection of SNVs in the KRAS gene, abundances as low as 0.05-0.1% were achieved for multiple SNVs occurring at the same and different codons. As low as 0.05% low-abundance detection sensitivity was also achieved for PCR amplicons of human genomic DNA extracted from cell samples. This proposed method presents the potential for ultrahigh specific multiplexed detection of SNVs with low-abundance detection capability, which may be applied to practical applications.
Collapse
Affiliation(s)
- Xiaojing Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Hu Hong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| |
Collapse
|
24
|
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A. Programmable DNA switches and their applications. NANOSCALE 2018; 10:4607-4641. [PMID: 29465723 DOI: 10.1039/c7nr07348h] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
Detection of low-abundance point mutations by competitive strand assisted endonuclease IV signal amplification system. Curr Med Sci 2017; 37:803-806. [PMID: 29058299 DOI: 10.1007/s11596-017-1808-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Genetic mutations are important molecular biomarkers for cancer diagnosis and surveillance. Therefore, the development of methods for mutation detection characterized with straightforward, highly specific and sensitive to low-level mutations within various sequence contexts is extremely needed. Although some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a fluorescent probe coupled with blocker and property of melting temperature discrimination, which is able to identify the presence of known or unknown single-base variations at abundances down to 0.1% within 20 min. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 10.15-38.48. The method is sequence independent, which assures a wide range of application. The new method would be an ideal choice for high-throughput in vitro diagnosis and precise clinical treatment.
Collapse
|
26
|
Li L, Xiao X, Ge J, Han M, Zhou X, Wang L, Su X, Yu C. Discrimination Cascade Enabled Selective Detection of Single-Nucleotide Mutation. ACS Sens 2017; 2:419-425. [PMID: 28723215 DOI: 10.1021/acssensors.7b00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Owing to the significance of single nucleotide mutation (SNM) for personalized medicine, the detection of SNM with high accuracy has recently attracted considerable interest. Here, we present a kinetic method for selective detection of SNM based on a discrimination cascade constructed by combining the toehold strand displacement (TSD) and endonuclease IV (Endo IV) catalyzed hydrolysis. The single-nucleotide specificity of the two DNA reactions allows highly selective detection of all types of single nucleotide changes (including single-nucleotide insertion and deletion), achieving a high discrimination factor with a median of 491 which is comparable with recently reported methods. For the first time, the enzyme assisted nucleic acid assay was characterized by single molecule analysis on total internal reflection fluorescence microscope (TIRFM) suggesting that the two steps do not work independently and the rate of TSD can be tuned by Endo IV facilitated conformation selection. The effective discrimination of the point mutation of BRAF gene in cancer and normal cell line suggests that this method can be a prominent post-PCR genotyping assay.
Collapse
Affiliation(s)
- Lidan Li
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianjin Xiao
- Family
Planning Research Institute/Center of Reproductive Medicine, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jingyang Ge
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Manli Han
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Zhou
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Wang
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyuan Yu
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|