1
|
Shanmughan A, Balamurugan K, Kalaiarasi G, Chitrarasu K, Shanmugaraju S. Triazine-Containing Pyridinium Organic Polymer Based on 4-Amino-1,8-naphthalimide Tröger's Base for Selective Fluorescent Sensing of Organoarsenic Feed Additives in Water. ACS MEASUREMENT SCIENCE AU 2025; 5:56-62. [PMID: 39991026 PMCID: PMC11843500 DOI: 10.1021/acsmeasuresciau.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 02/25/2025]
Abstract
A new triazine containing pyridinium organic polymer (TB-Py-COP) based on 4-amino-1,8-naphthalimide Tröger's base is developed and employed as a fluorescent chemosensor for selective sensing of organoarsenic feed additives in water. TB-Py-COP was readily synthesized by reacting "V-shaped" bis-[N-(4-pyridyl)methyl)]-9,18-methano-1,8-naphthalimide-[b,f][1,5]diazocine with cyanuric chloride in DMF at 100 °C for 3 days. TB-Py-COP exhibited a strong fluorescence emission in water and displayed selective, reversible fluorescence sensing responses for the roxarsone feed additive at the nanomolar (19 nM) level of sensitivity. The Stern-Volmer quenching constant (K SV) was determined to be 1.4 × 104 M-1. The selective sensing of roxarsone was further demonstrated in competitive environments, lake water, and buffer solutions.
Collapse
Affiliation(s)
- Ananthu Shanmughan
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, 678557 Kerala, India
| | - Karuppaiya Balamurugan
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, 678557 Kerala, India
| | - Giriraj Kalaiarasi
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, 678557 Kerala, India
- Department
of Chemistry, Karpagam Academy of Higher
Education, Coimbatore, 641021 Tamil Nadu, India
| | - Karunya Chitrarasu
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, 678557 Kerala, India
| | | |
Collapse
|
2
|
Liang QH, Cao BP, Qiu L, Ma C, Matsumoto K, Okamoto H, Xiao Q. Perfluoroalkylated benzoic acid-based phase-selective supramolecular self-assembly system for dye removal. Sci Rep 2025; 15:5825. [PMID: 39966447 PMCID: PMC11836302 DOI: 10.1038/s41598-025-90038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
In this study, perfluoroalkylated derivatives of benzoic acid S-6 and O-6 were designed and synthesized as supramolecular gelators using a simple one-step method. Both S-6 and O-6 could form gels in various organic solvents. Notably, these compounds have potential applications in environmental remediation, with S-6 demonstrating significant promise for oil spill treatment. After five recycling cycles, the recovery rate of the gelation capacity for diesel oil remained above 90%. Xerogels derived from O-6 at a concentration of 5 wt% in pump oil effectively adsorbed Rhodamine B (RhB). The adsorption process primarily involved chemical adsorption, electrostatic interactions between the O-6 xerogel and the cationic RhB dye, as well as physical adsorption within the xerogel's pores. In summary, benzoic acid derivatives represent a kind of multifunctional, recyclable, and efficient materials.
Collapse
Affiliation(s)
- Qin-Hong Liang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Ban-Peng Cao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Lingfang Qiu
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Cha Ma
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Kenta Matsumoto
- Graduate School of Science and Technology for Innovation, Graduate School Science and Engineering, Yamaguchi University, Ube, 755-8611, Japan
| | - Hiroaki Okamoto
- Graduate School of Science and Technology for Innovation, Graduate School Science and Engineering, Yamaguchi University, Ube, 755-8611, Japan
| | - Qiang Xiao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| |
Collapse
|
3
|
Chen ZH, Chen ZJ, Zeng Y, Liang YT, Guo JL, Yang SH, Wang ZY. Multifunctional N-fused fluorescent probes for detection of iron ions and nitro explosives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125281. [PMID: 39413606 DOI: 10.1016/j.saa.2024.125281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
In this work, two novel probes 4a and 4b were synthesized through Suzuki-Miyaura coupling reaction, whose structures were further confirmed by 1H NMR, 13C NMR, high-resolution mass spectrometry (HRMS) and X-ray single crystal diffraction. The optical properties of the obtained molecules were investigated accordingly. Owing to different bridging fluorophores, there are certain differences in optical performance and detection ability between the two synthesized compounds. Especially, due to the subtle difference in orbitals energy and electron distribution displayed by the DFT calculations, 4a possesses the characteristics of dual-state emission (DSE) molecule, while 4b is an aggregation-induced emission (AIE) molecule. Interestingly, these two molecules can be developed into multifunctional detection probes, successfully applied for the fluorescence recognition of iron ions and common nitroaromatic compounds (NACs). At the same time, the probe molecules can also be applied to the detection of NACs in aqueous environment. What's more, they can also be loaded on test strips and thin-films for fluorescence identification of NACs, thus being expected to be developed into portable detection tools for NACs.
Collapse
Affiliation(s)
- Zhao-Hua Chen
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Zu-Jia Chen
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Yu Zeng
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Yong-Tong Liang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Ji-Lin Guo
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Shi-Hang Yang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
4
|
Sarkar P, Tohora N, Mahato M, Ahamed S, Sultana T, Das SK. A Chromo-fluorogenic Probe for Selective Detection of Picric Acid Alongside Its Recovery by Aliphatic Amines and Construction of Molecular Logic Gates. J Fluoresc 2025; 35:751-767. [PMID: 38158478 DOI: 10.1007/s10895-023-03555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Nitroaromatic compounds are illicit explosive chemicals. For environmental security and homeland safety, selective and sensitive identification of these secondary-class explosives has been a reason for the exhaustive research arena of chemists for about a decade. We introduced a sensitive optical sensor with desalted neutral red (NR) dye. After ingressing picric acid (PA) in acetonitrile, the probe becomes non-fluorescent, displaying a colorimetric change from yellow to pink. The quenched phenomena and the changed color were re-established with aliphatic amine, trimethylamine (TEA). The reversibility is produced cyclically, both in fluorimetrically and spectrophotometrically. The detection limit for PA with our probe comes out as 0.639 µM; this value is significantly lower than many chemosensors available in the literature. Also, NR-stained filter paper strips-based test kit analysis has been deployed as a displayable photonic device for in-situ detection of PA. Furthermore, the whole system was conceptualized to produce single input, single output, and double input single output logic gates, which can be applied to digital devices. The chronological input manner as NTP (NR- TEA-PA) pushed us to configure a molecular keypad lock system, the basis of digital locking devices. The repeatable & reversible detection system exhibits "Write read- Erase-read Write-read' type memory devices.
Collapse
Affiliation(s)
- Pallobi Sarkar
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
5
|
Yuan R, Chen W, Zhuang M, Chi X, Ma L, Mi L, Dong M, Huang P, Wan Y, Zhang P, Wu H. Tröger's Base as a Potential Bridge to Type-I Photosensitizers: Mechanism and Antitumor Applications. J Med Chem 2025; 68:1483-1498. [PMID: 39772640 DOI: 10.1021/acs.jmedchem.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In contrast to Type-II photodynamic therapy (PDT), Type-I PDT with less oxygen consumption has shown great potential against tumor hypoxia. However, there are limited strategies available for designing Type-I photosensitizers (PSs). Herein, we present a promising strategy for synthesizing Type-I PSs (TBC-1-TBC-4) using Tröger's base (TB) framework. The TB framework can promote intersystem crossing efficiency and create an electron-rich environment, making it the most likely site for electron transfer to O2 to generate Type-I ROS. As anticipated, TBC-1-TBC-4 demonstrates Type-I ROS generation capability and their impressive visible light-harvesting ability significantly enhances this capability. Among them, TBC-1 demonstrates outstanding biocompatibility and PDT efficiency in vitro under both normoxia and hypoxia. Furthermore, TBC-1 effectively inhibits tumor growth in vivo, with negligible side effects. This is attributed to TBC-1's efficient generation of Type-I ROS and endoplasmic reticulum targeting ability. This study thus offers useful insights into developing Type-I PSs.
Collapse
Affiliation(s)
- Rui Yuan
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Wen Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Minyan Zhuang
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Xiaowei Chi
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Lin Ma
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Lei Mi
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Mengxue Dong
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Peng Huang
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Yu Wan
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Peng Zhang
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Hui Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| |
Collapse
|
6
|
Li X, Liu Z, Yang L, Zhou S, Qian Y, Wu Y, Yan Z, Zhang Z, Li T, Wang Q, Zhu C, Kong XY, Wen L. An ultrasensitive 2,4,6-trinitrophenol nanofluidic sensor inspired by olfactory sensory neurons in sniffer dogs. Chem Sci 2024; 15:19504-19512. [PMID: 39568954 PMCID: PMC11575536 DOI: 10.1039/d4sc05493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Explosives, as high-energy materials, could generate huge destructive explosions along with a massive release of energy. The regulatory or illegal transportation of explosives threatens the peace and stability worldwide. Among the many high-powered explosives, 2,4,6-trinitrophenol (TNP) is not only frequently used in many terrorist attacks, but also seriously jeopardizes environmental safety and human health. Hence, dependable methods for high-sensitivity, rapid and portable detection are desperately needed. Inspired by olfactory sensory neurons (OSNs) in sniffer dogs, we present a nanofluidic sensor for ultrasensitive TNP detection by in situ growing dense UiO-66-NH2 layers on the surface of anodic aluminum oxide (AAO) nanochannels. TNP could be specifically captured by UiO-66-NH2 of the sensor through charge transfer to form Meisenheimer complexes, which cause the ionic current change. The TNP concentrations are quantitatively analyzed by monitoring the changed ionic current. And the detection range is from 10-14 to 10-10 g mL-1 with a limit of detection as low as 6.5 × 10-16 g mL-1, which is far beyond those of the state-of-the-art sensors. This work provides a novel strategy for ultrasensitive detection of TNP as well as other explosives, which opens new and promising routes to various breakthroughs in the fields of homeland security, military applications, security inspections and environmental monitoring.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhanfang Liu
- Institute of Forensic Science, Ministry of Public Security Beijing 100038 P. R. China
| | - Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tingyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qingchen Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Congcong Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China Suzhou Jiangsu 215123 China
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China Suzhou Jiangsu 215123 China
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
7
|
Sendh J, Baruah JB. Sequential effects of two cations on the fluorescence emission of a coordination polymer with Zn 4O core in node. RSC Adv 2024; 14:31598-31606. [PMID: 39376515 PMCID: PMC11457270 DOI: 10.1039/d4ra06309k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Distinct changes in the fluorescence emissions of free ligand 5-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)isophthalic acid (H2NAPHISO) than a 2D-zinc-coordination polymer of it, caused by sequential interactions with different sets of binary cations were observed. The coordination polymer having unsymmetrical Zn4O core of tetranuclear zinc-node could be dispersed in dimethylformamide without its degradation. The coordination polymer had an emission peak at 435 nm (quantum yield = 0.082) which was selectively quenched by adding Fe2+ ions. Based on this quenching, the Fe2+ ions in aqueous solution could be detected with a detection limit 42.57 nM. The metal ions such as Li+, Na+, Cd2+, Hg2+, Al3+ did not interfere in the detection; but each of these ions together with Fe2+ ions showed characteristic shift of the emission spectra. The H2NAPHISO in dimethyl formamide was non-fluorescent, but showed emission at 452 nm upon addition of Cd2+ or Zn2+ ions. This new emission of H2NAPHISO caused by zinc or cadmium ions was not quenched by Fe2+ ions. Various cations had affected the emission of the H2NAPHISO with Zn2+ which was much different from the corresponding changes caused by the same ion on the emission of the coordination polymer. For example, the Mn2+ and Zn2+ ions together in a solution of the ligand showed a broad emission spectrum spreading over 380-450 nm, but ions Sn2+ and Zn2+ together had showed emission at a shorter wavelength (380 nm). These allowed to modulate the emission of the ligand by binary combination of metal ions.
Collapse
Affiliation(s)
- Jagajiban Sendh
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| | - Jubaraj B Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| |
Collapse
|
8
|
Jaithum K, Tummatorn J, Thongsornkleeb C, Ruchirawat S. Unveiling Route for the Synthesis of Tröger's Bases Through Azide Rearrangement. Chem Asian J 2024; 19:e202400513. [PMID: 38856228 DOI: 10.1002/asia.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
This study introduces a novel method for producing Tröger's bases by utilizing the rearrangement chemistry of benzyl azide. This method offers a convenient and adaptable pathway for synthesizing these important molecular structures with potential for further advancements. By reacting benzyl azide derivatives with TfOH under the presence of water, this process generates iminium ion, formaldehyde, and aniline intermediates in situ. Notably, this conversion is reversible under acidic conditions, allowing for the regeneration of the iminium ion and ultimately leading to the formation of the desired Tröger's base product. Additionally, this method could decrease the risk of exposure to an excess amount of formaldehyde.
Collapse
Affiliation(s)
- Kanokwan Jaithum
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
9
|
Bright SA, Erby M, Poynton FE, Monteyne D, Pérez-Morga D, Gunnlaugsson T, Williams DC, Elmes RBP. Tracking the cellular uptake and phototoxicity of Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base conjugates. RSC Chem Biol 2024; 5:344-359. [PMID: 38576718 PMCID: PMC10989513 DOI: 10.1039/d3cb00206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
Ruthenium(ii) complexes are attracting significant research attention as a promising class of photosensitizers (PSs) in photodynamic therapy (PDT). Having previously reported the synthesis of two novel Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base compounds 1 and 2 with interesting photophysical properties, where the emission from either the Ru(ii) polypyridyl centres or the naphthalimide moieties could be used to monitor binding to nucleic acids, we sought to use these compounds to investigate further and in more detail their biological profiling, which included unravelling their mechanism of cellular uptake, cellular trafficking and cellular responses to photoexcitation. Here we demonstrate that these compounds undergo rapid time dependent uptake in HeLa cells that involved energy dependent, caveolae and lipid raft-dependent mediated endocytosis, as demonstrated by confocal imaging, and transmission and scanning electron microscopy. Following endocytosis, both compounds were shown to localise to mostly lysosomal and Golgi apparatus compartments with some accumulation in mitochondria but no localisation was found to the nucleus. Upon photoactivation, the compounds increased ROS production and induced ROS-dependent apoptotic cell death. The photo-activated compounds subsequently induced DNA damage and altered tubulin, but not actin structures, which was likely to be an indirect effect of ROS production and induced apoptosis. Furthermore, by changing the concentration of the compounds or the laser used to illuminate the cells, the mechanism of cell death could be changed from apoptosis to necrosis. This is the first detailed biological study of Ru(ii)-polypyridyl Tröger's bases and clearly suggests caveolae-dependent endocytosis is responsible for cell uptake - this may also explain the lack of nuclear uptake for these compounds and similar results observed for other Ru(ii)-polypyridyl complexes. These conjugates are potential candidates for further development as PDT agents and may also be useful in mechanistic studies on cell uptake and trafficking.
Collapse
Affiliation(s)
- Sandra A Bright
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - MariaLuisa Erby
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Fergus E Poynton
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
| | - David Pérez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
- Center for Microscopy and Molecular Imaging CMMI Université Libre de Bruxelles Gosselies Belgium
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
| | - D Clive Williams
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Robert B P Elmes
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
- Department of Chemistry, Maynooth University, National University of Ireland Maynooth Co. Kildare Ireland +353 1708 4615
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University Maynooth Co. Kildare Ireland
| |
Collapse
|
10
|
Ullah MZ, Shahzad SA, Assiri MA, Irshad H, Rafique S, Shakir SA, Mumtaz A. An extensive experimental and DFT studies on highly selective detection of nitrobenzene through deferasirox based new fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123607. [PMID: 37948931 DOI: 10.1016/j.saa.2023.123607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
A deferasirox based substituted triazole amine sensor TAD has been synthesized for the highly selective detection of nitrobenzene in real samples. Sensor TAD exhibited selective quenching response against nitrobenzene among the other nitroaromatic compounds (NACs). Photoinduced electron transfer (PET) process was devised as plausible sensing mechanisms which was supported via UV-visible and fluorescence spectroscopy, 1H NMR titration experiment, density functional theory (DFT) analysis and Job's plot. Non-covalent interaction (NCI) analysis and Bader's quantum theory of atoms in molecules (QTAIM) analysis were performed to investigate the presence of non-covalent interactions and symmetry perturbation theory (SAPT0) was performed for energy decomposition and quantitative analysis of interaction energies between sensor TAD and NB. Furthermore, sensor TAD was practically applied for the identification of NB in real samples.
Collapse
Affiliation(s)
- Muhammad Zahid Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sanwa Rafique
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Syed Ahmed Shakir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
11
|
Mohan B, Sarkar D, Raja Lakshmi P, Umadevi D, Shanmugaraju S. N-aryl-4-amino-1,8-naphthalimide Tröger's bases-based internal charge transfer (ICT) fluorescence ‘turn-on’ chemosensors for volatile organic amines. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Chen SH, Chen ZH, Jiang K, Cao XY, Chen LY, Ouyang J, Wang ZY. Regulating donor-acceptor system toward highly efficient dual-state emission for sensitive response of nitroaromatic explosives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122905. [PMID: 37245375 DOI: 10.1016/j.saa.2023.122905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Dual-state emission luminogens (DSEgens) as fluorophores emit efficiently in solution and solid forms have gained increasing concern in the field of chemical sensing. Recent efforts by our group led to the identification of DSEgens as an easy-to-visualize nitroaromatic explosives (NAEs) detection platform. However, none of the previously studied NAEs probes show effective improvement in sensitivity. Here, we designed a series of benzoxazole-based DSEgens through multiple strategies driven by theoretical calculations, revealing their improved detecting performance on NAEs. Compounds 4a-4e exhibit thermal- and photo-stability, large Stokes shift as well as sensitivity solvatochromism (except for 4a and 4b). A subtle balance between rigid conjugation and distorted conformation endows these D-A type fluorophores 4a-4e with DSE properties. Furthermore, 4d and 4e show aggregation-induced emission phenomenon caused by distorted molecular conformation and restricted intramolecular rotation. Interestingly, DSEgen 4e displays anti-interference and sensitivity towards NAEs with a detection limit of 10-8 M. It can be applied for expedient and distinct visual identification of NAEs not only in solution but also on filter paper and film, supporting this new DSEgen as reliable NAEs chemoprobe.
Collapse
Affiliation(s)
- Si-Hong Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, China
| | - Zhao-Hua Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China.
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, China
| | - Liu-Yu Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, China; Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
13
|
Wang H, Lv R, Gao S, Wang Y, Hao N, An Y, Li Y, Ji Y, Cao M. Investigation of the interaction between the functionalized mesoporous silica nanocarriers and bovine serum albumin via multi-spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122421. [PMID: 36801729 DOI: 10.1016/j.saa.2023.122421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
It is well known that the physicochemical properties of nanocarriers, which are closely related to the surface modification of nanoparticles, have crucial impacts on their biological effects. Herein, the interaction between functionalized degradable dendritic mesoporous silica nanoparticles (DDMSNs) and bovine serum albumin (BSA) was investigated for probing into the nanocarriers' potential toxicity using multi-spectroscopy such as ultraviolet/visible (UV/Vis), synchronous fluorescence, Raman and circular dichroism (CD) spectroscopy. BSA, owing to its structural homology and high sequence similarity with HSA, was employed as the model protein to study the interactions with DDMSNs, amino-modified DDMSNs (DDMSNs-NH2) and hyaluronic acid (HA) coated nanoparticles (DDMSNs-NH2-HA). It was found that the static quenching behavior of DDMSNs-NH2-HA to BSA was accompanied by an endothermic and hydrophobic force-driven thermodynamic process, which was confirmed by fluorescence quenching spectroscopic studies and thermodynamic analysis. Furthermore, the conformational variations of BSA upon interaction with nanocarriers were observed by combination of UV/Vis, synchronous fluorescence, Raman and CD spectroscopy. The microstructure of amino residues in BSA changed due to the existence of nanoparticles, for example, the amino residues and hydrophobic groups exposed to microenvironment and the alpha helix (α-helix) content of BSA decreased. Specially, through thermodynamic analysis, the diverse binding modes and driving forces between nanoparticles and BSA were discovered because of different surface modifications on DDMSNs, DDMSNs-NH2 and DDMSNs-NH2-HA. We believe that this work can promote the interpretation of mutual impact between nanoparticles and biomolecules, which will be in favor of predicting the biological toxicity of nano-DDS and engineering functionalized nanocarriers.
Collapse
Affiliation(s)
- Haohao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ruihong Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shanshan Gao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuan Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ning Hao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yingli An
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongsheng Ji
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Mingzhuo Cao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
14
|
Mohan B, Shanmugaraju S. Synthesis, characterization, and heparin-binding study of a self-assembled p-cymene-Ru(II) metallocycle based on a 4-amino-1,8-naphthalimide Tröger's base supramolecular scaffold. Dalton Trans 2023; 52:2566-2570. [PMID: 36330868 DOI: 10.1039/d2dt03079a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the very first example of a self-assembled p-cymene-Ru(II) metallocycle based on a green emitting 4-amino-1,8-naphthalimide Tröger's base (TBNap) supramolecular scaffold. A new cleft-shaped TBNap-derived di-4-picolyl donor was synthesized and reacted in a 2 : 2 stoichiometry ratio with a dinuclear Ru(II) acceptor (Ru-A) to generate a [2 + 2] self-assembled metallocycle (TBNap-Ru-MC) in good yield. Both TBNap and TBNap-Ru-MC showed positive solvatochromism in different solvents with varying polarities. In addition, the binding propensity of cationic TBNap-Ru-MC toward the heparin polyanion was determined using fluorescence titration studies. The initial fluorescence emission of TBNap-Ru-MC was quenched upon the gradual addition of the heparin polyanion, and the Stern-Volmer quenching constant (KSV) was calculated to be 3.97 × 105 M-1.
Collapse
Affiliation(s)
- Binduja Mohan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | | |
Collapse
|
15
|
Lakshmi PR, Mohan B, Kang P, Nanjan P, Shanmugaraju S. Recent advances in fluorescence chemosensors for ammonia sensing in the solution and vapor phases. Chem Commun (Camb) 2023; 59:1728-1743. [PMID: 36661305 DOI: 10.1039/d2cc06529k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developing low-cost and reliable sensor systems for the detection of trace amounts of toxic gases is an important area of research. Ammonia (NH3) is a commonly produced industrial chemical and a harmful colorless pungent gas released from various manufacturing and processing industries. Continuous exposure to NH3 vapor causes serious menace to human health, microorganisms, and the ecosystem. Exposure to relatively higher concentrations of NH3 severely affects the respiratory system and leads to kidney failure, nasal erosion ulcers, and gastrointestinal diseases. Excessive accumulation of NH3 in the biosphere can cause various metabolic disruptions. As a consequence of this, therefore, suitable sensing methods for selective detection and quantification of trace amounts of NH3 are of utmost need to protect the environment and living systems. Given this, there have been significant research advances in the preceding years on the development of fluorescence chemosensors for efficient sensing and monitoring of the trace concentration of NH3 both in solution and vapor phases. This review article highlights several fluorescence chemosensors reported until recently for sensing and quantifying NH3 in the vapor phase or ammonium ions (NH4+) in the solution phase. The wide variety of fluorescence chemosensors discussed in this article are systematically gathered according to their structures, functional properties, and fluorescence sensing properties. Finally, the usefulness and existing challenges of using the fluorescence-based sensing method for NH3 detection and the future perspective on this research area have also been highlighted.
Collapse
Affiliation(s)
- Pandi Raja Lakshmi
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | - Binduja Mohan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | - Preeti Kang
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | - Pandurangan Nanjan
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus-570026, Karnataka, India.
| | | |
Collapse
|
16
|
Kannan S, Maayuri R, Shanmugaraju S. Terpyridine-4-amino-1,8-naphthalimide chemosensor for discriminative fluorescent sensing of divalent metal cations at ppb level of sensitivity. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Li D, Lv P, Han XW, Jia Z, Zheng M, Feng HT. A Highly Efficient Fluorescent Sensor Based on AIEgen for Detection of Nitrophenolic Explosives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010181. [PMID: 36615375 PMCID: PMC9821835 DOI: 10.3390/molecules28010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The detection of nitrophenolic explosives is important in counterterrorism and environmental protection, but it is still a challenge to identify the nitroaromatic compounds among those with a similar structure. Herein, a simple tetraphenylethene (TPE) derivative with aggregation-induced emission (AIE) characteristics was synthesized and used as a fluorescent sensor for the detection of nitrophenolic explosives (2, 4, 6-trinitrophenol, TNP and 2, 4-dinitrophenol, DNP) in water solution and in a solid state with a high selectivity. Meanwhile, it was found that only hydroxyl containing nitrophenolic explosives caused obvious fluorescence quenching. The sensing mechanism was investigated by using fluorescence titration and 1H NMR spectra. This simple AIE-active probe can potentially be applied to the construction of portable detection devices for explosives.
Collapse
Affiliation(s)
- Dongmi Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471000, China
- Correspondence: (D.L.); (H.-T.F.)
| | - Panpan Lv
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Xiao-Wen Han
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Zhilei Jia
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471000, China
| | - Min Zheng
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471000, China
| | - Hai-Tao Feng
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
- Correspondence: (D.L.); (H.-T.F.)
| |
Collapse
|
18
|
Feng H, Chen Y, Wang R, Niu P, Shi C, Yang Z, Cheng M, Jiang J, Wang L. Chiral selection of Tröger's base-based macrocycles with different ethylene glycol chains length in crystallization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
19
|
AIEE Active Stilbene Based Fluorescent Sensor with Red-Shifted Emission for Vapor Phase Detection of Nitrobenzene and Moisture Sensing. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Mechanochromic and AIE active fluorescent probes for solution and vapor phase detection of picric acid: Application of logic gate. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Mohan B, Noushija MK, Shanmugaraju S. Amino-1,8-naphthalimide-based fluorescent chemosensors for Zn(II) ion. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Ma T, Li K, Hu J, Xin Y, Cao J, He J, Xu Z. Carbazole-Equipped Metal-Organic Framework for Stability, Photocatalysis, and Fluorescence Detection. Inorg Chem 2022; 61:14352-14360. [PMID: 36026539 DOI: 10.1021/acs.inorgchem.2c02135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The useful yet underutilized backfolded design is invoked here for functionalizing porous solids with the versatile carbazole function. Specifically, we attach carbazole groups as backfolded side arms onto the backbone of a linear dicarboxyl linker molecule. The bulky carbazole side arms point away from the carboxyl links and do not disrupt the Zr-carboxyl framework formation; namely, the resultant MOF solid ZrL1 features the same net as that of the unfunctionalized dicarboxyl linker, also known as the PCN-111 net or UiO-66 net. The ZrL1 structure features only half linker occupancy (about 6 out of the 12 linkers around the Zr6O8 cluster being missing) and partially collapses upon activation (acetone exchange and evacuation). Notably, the stability improves after heating in diphenyl oxide at 260 °C (POP-260 treatment; to form ZrL1-260), as indicated by the higher crystallinity and surface area of the activated ZrL1-260 sample. The ZrL1-260 samples achieve 72% yield in photocatalyzing reductive dehalogenation of phenacyl bromide; ZrL1 can detect nitro-aromatic compounds via fluorescence quenching, with selectivity and sensitivity toward 4-nitroaniline, featuring a limit of detection of 96 ppb.
Collapse
Affiliation(s)
- Tengrui Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jialin Cao
- College of Engineering and Applied Sciences, Nanjing University, Science Park of Nanjing University, Qixia District, 210008 Nanjing, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
23
|
Mohan B, Estalayo-Adrián S, Umadevi D, la Cour Poulsen B, Blasco S, McManus GJ, Gunnlaugsson T, Shanmugaraju S. Design, Synthesis, and Anticancer Studies of a p-Cymene-Ru(II)-Curcumin Organometallic Conjugate Based on a Fluorescent 4-Amino-1,8-naphthalimide Tröger's Base Scaffold. Inorg Chem 2022; 61:11592-11599. [PMID: 35857283 DOI: 10.1021/acs.inorgchem.2c01005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique V-shaped "chiral" supramolecular scaffold, N-(4-pyridyl)-4-amino-1,8-naphthalimide Tröger's base (TBNap), was synthesized in good yield from a precursor N-(4-pyridyl)-4-amino-1,8-naphthalimide (Nap). TBNap was characterized using different spectroscopic methods and the molecular structure was elucidated by diffraction analysis. A new p-cymene-Ru(II)-curcumin conjugate (TB-Ru-Cur) was designed by reacting TBNap dipyridyl donor and ruthenium-curcuminato acceptor [RuCur = (p-cymene)Ru-(curcuminato)Cl] in the presence of silver triflate. TB-Ru-Cur was isolated in quantitative yield and characterized using Fourier transform infrared (FT-IR), NMR (1H, 13C, and 19F), and electrospray ionization mass spectrometry (ESI-MS), and the molecular structure has been predicted using a computational study. Both TBNap and TB-Ru-Cur exhibited intramolecular charge transfer (ICT)-based fluorescence emission. Furthermore, the anticancer properties of TBNap, Ru-Cur, and TB-Ru-Cur were assessed in different cancer cell lines. Gratifyingly, the conjugate TB-Ru-Cur displayed fast-cellular internalization and good cytotoxicity against HeLa, HCT-116, and HepG2 cancer cells and the estimated IC50 value was much lower than that of the precursors (TBNap and Ru-Cur) and the well-known chemotherapeutic drug cisplatin.
Collapse
Affiliation(s)
- Binduja Mohan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | - Sandra Estalayo-Adrián
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | - Bjørn la Cour Poulsen
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Salvador Blasco
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático José Beltrán Martínez 2, 46980 Paterna, Spain
| | - Gavin J McManus
- School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | | |
Collapse
|
24
|
Gorai T, Lovitt JI, Umadevi D, McManus G, Gunnlaugsson T. Hierarchical supramolecular co-assembly formation employing multi-component light-harvesting charge transfer interactions giving rise to long-wavelength emitting luminescent microspheres. Chem Sci 2022; 13:7805-7813. [PMID: 35865882 PMCID: PMC9258320 DOI: 10.1039/d2sc02097a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Charge transfer (CT) interaction induced formation of a hierarchical supramolecular assembly has attracted attention due to its wide diversity of structural and functional characteristics. In the present work, we report the generation of green luminescent microspheres from the charge transfer interaction induced co-assembly of a bis-naphthyl dipicolinic amide (DPA) derivative with tetracyanobenzene (TCNB) for the first time. The properties of these self-assemblies were studied both in solution and the solid-state using spectroscopic and a variety of microscopy techniques. The X-ray crystal structure analysis showed a mixed stack arrangement of DPA and TCNB. The molecular orbital and energy level calculations confirm the charge transfer complex formation between DPA and TCNB. Furthermore, energy transfer was observed from the green luminescent CT complex to a red-emitting dye, pyronin Y, in the microsphere matrix, leading to the formation of a light-harvesting tri-component self-assembly.
Collapse
Affiliation(s)
- Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad (IITPKD) Palakkad-678557 Kerala India
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
25
|
Zhao T, Yan W, Dong F, Hu X, Xu Y, Wang Z, Shen Y, Wang W, Zhao Y, Wei W. A smartphone-based platform for ratiometric visualization of SARS-CoV-2 via an oligonucleotide probe. Mikrochim Acta 2022; 189:268. [PMID: 35781842 DOI: 10.1007/s00604-022-05364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
COVID-19 necessitates the development of reliable and convenient diagnostic tools. In this work, a facile 3D-printed smartphone platform was constructed that achieved reliable visual detection of SARS-CoV-2 by eliminating the effect of ambient light and fixing the camera position relative to the sample. The oligonucleotide probe is modified with orange-red-emitting TAMRA working as an internal standard and green-emitting FAM serving as a sensitive sensing agent. Under 365-nm UV excitation, the emission wavelengths of TAMRA and FAM are 580 nm and 518 nm, respectively. When the probes interact with the targets, the green fluorescence gradually restores while the orange-red fluorescence remains stable. Thus, a striking color transition from orange-red to green could be observed by the naked eye. The detection limit of SARS-CoV-2 nucleic acid is 0.23 nM, and the entire process of color change could be completed in 25 min. Furthermore, the RGB value analysis of the sample solution was conducted using a smartphone for reliable and reproducible discrimination of SARS-CoV-2. The proposed smartphone platform might establish a general method for visual detection of SARS-CoV-2 nucleic acid as well as other virus-related diseases.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Weizhen Yan
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fengqi Dong
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinlong Hu
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanli Xu
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhenyu Wang
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yating Shen
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wanrong Wang
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ye Zhao
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Wenmei Wei
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
26
|
Yu X, Wan S, Wu W, Yang C, Lu W. γ-Cyclodextrin-based [2]rotaxane stoppered with gold(I)-ethynyl complexation: phosphorescent sensing for nitroaromatics. Chem Commun (Camb) 2022; 58:6284-6287. [PMID: 35550657 DOI: 10.1039/d2cc02256g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [2]rotaxane is assembled by γ-cyclodextrin (γ-CD) with threaded 1,4-diethynylbiphenyl and bulky Au(I)-phosphine stoppers. The phosphorescence of the [2]rotaxane has been observed in aerated aqueous solution and found to be quenched by nitroaromatics due to γ-CD-based co-binding, providing a sensitive approach towards explosive-sensing.
Collapse
Affiliation(s)
- Xingke Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Shigang Wan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.
| |
Collapse
|
27
|
A simple 4-amino-1,8-naphthalimide hydrazine based “turn-on” fluorescent chemosensor for selective and reversible detection of Zn(II) ion. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
AIEE active new fluorescent and colorimetric probes for solution and vapor phase detection of Nitrobenzene: A reversible mechanochromism and application of logic gate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Harathi J, Thenmozhi K. Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium. CHEMOSPHERE 2022; 286:131825. [PMID: 34375830 DOI: 10.1016/j.chemosphere.2021.131825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Owing to the escalating threat of criminal activities and pollution aroused by 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), development of a proficient sensor for the detection of these explosives is highly demanded. Herein, a water-soluble ionic liquid-tagged fluorescent probe, 1-ethyl-3-(3-formyl-4-hydroxybenzyl)-1H-benzimidazol-3-ium chloride (EB-IL) has been designed and synthesized for the detection of TNT and TNP in 100% aqueous medium. The EB-IL fluorescent probe displayed strong cyan-blue fluorescence at 500 nm which gets quenched upon the addition of TNT/TNP over other concomitant nitro-compounds. The distinct binding response of EB-IL towards TNT could be due to the formation of hydrogen bonding between the acidic proton of benzimidazolium (C2-H) and nitro group of TNT. Meanwhile, the selective binding of TNP with EB-IL could be due to the exchange of counter Cl- anion of EB-IL with picrate anion. The fluorescence quenching of EB-IL by TNT could be attributed to the resonance energy transfer (RET) and that of TNP is ascribed to the anion-exchange process. The developed sensor is extremely selective and sensitive towards TNT and TNP with high quenching constants of 1.94 × 105 M-1 and 2.32 × 106 M-1 and shows a lower detection limit of 159 nM and 282 nM, respectively.
Collapse
Affiliation(s)
- Jonnagaddala Harathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
30
|
Shanmughan A, Raja Lakshmi P, Umadevi D, Shanmugaraju S. Discriminative fluorescent sensing of nitro-antibiotics at ppb level using N-phenyl-amino-1,8-naphthalimides chemosensors. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
31
|
CuO/CaO mediated synthesis of amino-1,8-naphthalimides from the nitro analogues. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Prabha D, Singh D, Kumar P, Gupta R. Selective Detection of Picric Acid and Pyrosulfate Ion by Nickel Complexes Offering a Hydrogen-Bonding-Based Cavity. Inorg Chem 2021; 60:17889-17899. [PMID: 34809423 DOI: 10.1021/acs.inorgchem.1c02479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work describes the synthesis and characterization of three mononuclear nickel complexes supported with amide-based pincer ligands. All three complexes presented an H-bonding-based cavity due to the migration of amidic protons to the appended heterocyclic rings that formed H-bonds with the metal-ligated solvent molecule(s). These complexes functioned as the nanomolar chemosensors for the detection of picric acid and pyrosulfate ion as inferred by the detailed absorption and emission spectral studies while further supported with FTIR, NMR, and mass spectra of the isolated products. We also illustrate a few practical detection methods for the sensing of picric acid in the solution state as the naked-eye colorimetric methods and in the solid state by employing polystyrene films.
Collapse
Affiliation(s)
- Divya Prabha
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Devender Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Pramod Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
33
|
Tethering smartness to the metal containing polymers - recent trends in the stimuli-responsive metal containing polymers. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Yin JH, Liu M, Meng L, Tan ND, Xu N. Synthesis of water-soluble, ultrabright Cu nanoclusters with core-shell structure via facile reduction approach for determination of 4-nitrophenol. NANOTECHNOLOGY 2021; 33:035601. [PMID: 34348244 DOI: 10.1088/1361-6528/ac1a95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, we reported a facile reduction approach for fabrication of water-soluble and ultrabright Cu nanoclusters with core-shell structure. A certain amount of reducing agent as NaBH4was introduced into the polyethyleneimine-stabilized Cu nanoclusters (CuNCs@PEI) system, which exhibited 4-fold fluorescence enhancement along with a blue shift of the emission peak. The variations of morphology, valence states and functional groups demonstrated that a Cu shell was formed surround CuNCs (defined as CuNCs-Cu@PEI), attributable to metal complex (PEI-Cu+and PEI-Cu2+) reduction. The effect of core-shell morphology on luminous and electron relaxation mechanism of CuNCs-Cu@PEI was investigated via temperature-dependent steady and time-resolved fluorescence measurements. The CuNCs-Cu@PEI with a high fluorescence quantum yields of 22.59% were able to homogeneously disperse in aqueous phase, indicating their potential applications in biological labeling, sensing and invivoimaging. Finally, the CuNCs-Cu@PEI was employed as a fluorescence probe to determine 4-nitrophenol, of which the detection limit was much lower than initial CuNCs@PEI.
Collapse
Affiliation(s)
- Jian-Hang Yin
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Mengxuan Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Lei Meng
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Nai-Di Tan
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Na Xu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| |
Collapse
|
35
|
Murphy SA, Phelan C, Shanmugaraju S, Blasco S, Gunnlaugsson T. Fluorescent 3-amino-1,8-naphthalimide Tröger’s bases (3-amino-TBNaps) incorporating protected α-amino acids. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Li ZY, Yao ZQ, Feng R, Sun MH, Shan XT, Su ZH, Li W, Bu XH. A highly stable terbium metal-organic framework for efficient detection of picric acid in water. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Chong H, Xu Y, Han Y, Yan C, Su D, Wang C. Pillar[5]arene‐based “Three‐components” Supramolecular Assembly and the Performance of Nitrobenzene‐based Explosive Fluorescence Sensing. ChemistrySelect 2021. [DOI: 10.1002/slct.202102725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hui Chong
- Department of Chemical and Chemical Engineering Yangzhou University City of Yangzhou 225009 Jiangsu Province China
| | - Yinghui Xu
- Department of Chemical and Chemical Engineering Yangzhou University City of Yangzhou 225009 Jiangsu Province China
| | - Ying Han
- Department of Chemical and Chemical Engineering Yangzhou University City of Yangzhou 225009 Jiangsu Province China
| | - Chaoguo Yan
- Department of Chemical and Chemical Engineering Yangzhou University City of Yangzhou 225009 Jiangsu Province China
| | - Dawei Su
- School of Mathematical and Physical Sciences University of Technology Sydney City campus, Broadway Sydney NSW 2007 Australia
| | - Chengyin Wang
- Department of Chemical and Chemical Engineering Yangzhou University City of Yangzhou 225009 Jiangsu Province China
- Testing Centre Yangzhou University City of Yangzhou 225009 Jiangsu Province China
| |
Collapse
|
38
|
Basak T, Frontera A, Chattopadhyay S. Synthesis and characterization of a mononuclear zinc(ii) Schiff base complex: on the importance of C-H⋯π interactions. RSC Adv 2021; 11:30148-30155. [PMID: 35480293 PMCID: PMC9040895 DOI: 10.1039/d1ra03943a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
A zinc(ii) complex, [ZnL(H2O)]·H2O {H2L = 2,2′-[(2,2-dimethyl-1,3-propanediyl)bis(nitrilomethylidyne)]bis[6-ethoxyphenol]} has been synthesized and characterized by UV-vis and IR spectroscopy. The structure of the complex has been confirmed by X-ray crystallography and the noncovalent interactions characterized using Hirshfeld surface analysis. In addition to the conventional H-bonds involving the Zn-coordinated and non-coordinated water molecules, interesting C–H⋯π interactions between the H-atoms belonging to aliphatic part of the ligand (2,2-dimethyl-1,3-propanediyl) and the Zn-coordinated aromatic rings are established. These interactions have been studied using DFT calculations (PBE0-D3/def2-TZVP) and characterized using molecular electrostatic potential (MEP) surfaces and the noncovalent interaction (NCI) plot index analyses. The strength of the C–H⋯π interaction in the solid state of [ZnL(H2O)]·H2O has been evaluated using DFT calculations and also analysed using the MEP surface and NCI plot index computational tool.![]()
Collapse
Affiliation(s)
- Tanmoy Basak
- Department of Chemistry, Inorganic Section, Jadavpur University Kolkata-700032 India
| | - Antonio Frontera
- Departamento de Química, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma Baleares Spain
| | - Shouvik Chattopadhyay
- Department of Chemistry, Inorganic Section, Jadavpur University Kolkata-700032 India
| |
Collapse
|
39
|
Murphy SA, Phelan CA, Veale EB, Kotova O, Comby S, Gunnlaugsson T. Fluorescent 4-amino-1,8-naphthalimide Tröger's bases (TBNaps) possessing (orthogonal) 'α-amino acids', esters and di-peptides and their solvent dependent photophysical properties. Org Biomol Chem 2021; 19:6817-6833. [PMID: 34308464 DOI: 10.1039/d1ob00973g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of fifteen luminescent bis-naphthalimide based Tröger's bases (TBNaps) derived from 4-amino-1,8-naphthalimide (4-Amino-Nap) precursors is described; these scaffolds possess α-amino acids, esters or di-peptides conjugated at the imide site and show minor fluorescence in aqueous solution while being highly emissive in organic solvents. The investigation shows that these TBNaps possessing ICT excited state properties are capable of generating either positive or negative solvatochromic effects in response to changes in polarity and/or the hydrogen bonding capabilities of the medium.
Collapse
Affiliation(s)
- Samantha A Murphy
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Caroline A Phelan
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Emma B Veale
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Oxana Kotova
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. and Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Steve Comby
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. and Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
40
|
Firuzabadi FD, Alavi MA, Zarekarizi F, Tehrani AA, Morsali A. A pillared metal-organic framework with rich π-electron linkers as a novel fluorescence probe for the highly selective and sensitive detection of nitroaromatics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Michalak M, Bisek B, Nowacki M, Górecki M. Base-Catalyzed, Solvent-Free Synthesis of Rigid V-Shaped Epoxydibenzo[ b, f][1,5]diazocines. J Org Chem 2021; 86:8955-8969. [PMID: 34161097 PMCID: PMC8279491 DOI: 10.1021/acs.joc.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A novel method for
the synthesis of epoxydibenzo[b,f][1,5]diazocines exhibiting a V-shaped molecular
architecture is reported. The unique approach is based on unprecedented
base-catalyzed, solvent-free autocondensation and cross-condensation
of fluorinated o-aminophenones. The structure of
the newly synthesized diazocines was confirmed independently by X-ray
analysis and chiroptical methods. The rigidity of the diazocine scaffold
allowed for the separation of the racemate into single enantiomers
that proved to be thermally stable up to 140 °C. Furthermore,
the inertness of the diazocine scaffold was demonstrated by performing
a series of typical transformations, including transition metal-catalyzed
reactions, proceeding without affecting the bis-hemiaminal subunit.
Collapse
Affiliation(s)
- Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Bartosz Bisek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Nowacki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
42
|
Synthesis, crystal structure and highly sensitive detection property of a fluorescent copper coordination polymer. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Ghosh A, Seth SK, Ghosh A, Pattanayak P, Mallick A, Purkayastha P. A New Compound for Sequential Sensing of Picric Acid and Aliphatic Amines: Physicochemical Details and Construction of Molecular Logic Gates. Chem Asian J 2021; 16:1157-1164. [PMID: 33787004 DOI: 10.1002/asia.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Indexed: 01/09/2023]
Abstract
Picric acid (PA) at low concentration is a serious water pollutant. Alongside, aliphatic amines (AAs) add to the queue to pollute surface water. Plenty of reports are available to sense PA with an ultralow limit of detection (LOD). However, only a handful of works are testified to detect AAs. A new fluorescent donor-acceptor compound has been synthesized with inherent intramolecular charge transfer (ICT) character that enables selective and sensitive colorimetric quantitative detection of PA and AAs with low LODs in non-aqueous as well as aqueous solutions. The synthesized compound is based on a hemicyanine skeleton containing two pyridenylmethylamino groups at the donor and a benzothiazole moiety at the acceptor ends. The detailed mechanisms and reaction dynamics are explained spectroscopically along with computational support. The fluorescence property of the detecting compound changes due to protonation of its pyridinyl centers by PA leading to quenching of fluorescence and subsequently de-protonation by AAs to revive the signal. We have further designed logic circuits from the acquired optical responses by sequential interactions.
Collapse
Affiliation(s)
- Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Sourav Kanti Seth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arnab Ghosh
- Department of Materials Science, Indian Association for the Cultivation of Science, 700032, Jadavpur, Kolkata, India
| | - Pradip Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Kalla Bypass More, WB 713340, Burdwan, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| |
Collapse
|
44
|
Raja Lakshmi P, Nanjan P, Kannan S, Shanmugaraju S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213793] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Lovitt JI, Umadevi D, Raja Lakshmi P, Twamley B, Gunnlaugsson T, Shanmugaraju S. Synthesis, structural characterization, antibiotics sensing and coordination chemistry of a fluorescent 4-amino-1,8-naphthalimide Tröger’s base supramolecular scaffold. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1889551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- June I. Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC) School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Deivasigamani Umadevi
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Pandi Raja Lakshmi
- Discipline of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Brendan Twamley
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC) School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | | |
Collapse
|
46
|
Jiang S, Meng L, Ma W, Qi Q, Zhang W, Xu B, Liu L, Tian W. Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Murphy SA, Kotova O, Comby S, Gunnlaugsson T. Fluorescent 4-amino-1,8-naphthalimide Tröger’s bases possessing conjugated 4-amino-1,8-naphthalimide moieties and their potential fullerenes Host-Guest complexes. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
48
|
Chen H, Zhang Z, Hu T, Zhang X. An NH 2-modified {EuIII2}–organic framework for the efficient chemical fixation of CO 2 and highly selective sensing of 2,4,6-trinitrophenol. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00762a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An amino-functionalized microporous material of {(Me2NH2)4[Eu4(DDAC)3(HCO2)(OH2)2]·8DMF·9H2O}n with hierarchical pore voids displays efficient chemical fixation of CO2 and highly selective sensing of 2,4,6-trinitrophenol.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
49
|
Li Z, Zhu X, Gao E, Wu S, Zhang Y, Zhu M. Bifunctional luminescent Eu metal–organic framework for sensing nitroaromatic pollutants and Fe
3+
ion with high sensitivity and selectivity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhipeng Li
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Xiaopeng Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| |
Collapse
|
50
|
Jin CH, Zhu TT, Xi ZH, Chai JL, Zhang XW, Han J, Zhao XL, Chen XD. Lanthanide complexes based on a C symmetric tripodal ligand and potential application as fluorescent probe of Fe3+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|