1
|
Tan Z, Calandrini V, Dhont JKG, Nägele G, Winkler RG. Hydrodynamics of immiscible binary fluids with viscosity contrast: a multiparticle collision dynamics approach. SOFT MATTER 2021; 17:7978-7990. [PMID: 34378623 DOI: 10.1039/d1sm00541c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a multiparticle collision dynamics (MPC) implementation of layered immiscible fluids A and B of different shear viscosities separated by planar interfaces. The simulated flow profile for imposed steady shear motion and the time-dependent shear stress functions are in excellent agreement with our continuum hydrodynamics results for the composite fluid. The wave-vector dependent transverse velocity auto-correlation functions (TVAF) in the bulk-fluid regions of the layers decay exponentially, and agree with those of single-phase isotropic MPC fluids. In addition, we determine the hydrodynamic mobilities of an embedded colloidal sphere moving steadily parallel or transverse to a fluid-fluid interface, as functions of the distance from the interface. The obtained mobilities are in good agreement with hydrodynamic force multipoles calculations, for a no-slip sphere moving under creeping flow conditions near a clean, ideally flat interface. The proposed MPC fluid-layer model can be straightforwardly implemented, and it is computationally very efficient. Yet, owing to the spatial discretization inherent to the MPC method, the model can not reproduce all hydrodynamic features of an ideally flat interface between immiscible fluids.
Collapse
Affiliation(s)
- Zihan Tan
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | | | | | | | | |
Collapse
|
2
|
Pressure-Driven Nitrogen Flow in Divergent Microchannels with Isothermal Walls. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gas flow and heat transfer in confined geometries at micro-and nanoscales differ considerably from those at macro-scales, mainly due to nonequilibrium effects such as velocity slip and temperature jump. Nonequilibrium effects increase with a decrease in the characteristic length-scale of the fluid flow or the gas density, leading to the failure of the standard Navier–Stokes–Fourier (NSF) equations in predicting thermal and fluid flow fields. The direct simulation Monte Carlo (DSMC) method is employed in the present work to investigate pressure-driven nitrogen flow in divergent microchannels with various divergence angles and isothermal walls. The thermal fields obtained from numerical simulations are analysed for different inlet-to-outlet pressure ratios (1.5≤Π≤2.5), tangential momentum accommodation coefficients, and Knudsen numbers (0.05≤Kn≤12.5), covering slip to free-molecular rarefaction regimes. The thermal field in the microchannel is predicted, heat-lines are visualised, and the physics of heat transfer in the microchannel is discussed. Due to the rarefaction effects, the direction of heat flow is largely opposite to that of the mass flow. However, the interplay between thermal and pressure gradients, which are affected by geometrical configurations of the microchannel and the applied boundary conditions, determines the net heat flow direction. Additionally, the occurrence of thermal separation and cold-to-hot heat transfer (also known as anti-Fourier heat transfer) in divergent microchannels is explained.
Collapse
|
3
|
Eloul S, Frenkel D. Nano-pump based on exothermic surface reactions. SOFT MATTER 2021; 17:1173-1177. [PMID: 33511971 DOI: 10.1039/d0sm02079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present simulations indicating that it should be possible to construct a switchable nano-scale fluid pump, driven by exothermic surface reactions. Such a pump could, for instance, be controlled electro-chemically. In our simulations we explore a simple illustration of such a pump. We argue that the simplicity of the pump design could make it attractive for micro/nano-fluidics applications.
Collapse
Affiliation(s)
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, UK.
| |
Collapse
|
4
|
Zhao X, Li L, Xie W, Qian Y, Chen W, Niu B, Chen J, Kong XY, Jiang L, Wen L. pH-regulated thermo-driven nanofluidics for nanoconfined mass transport and energy conversion. NANOSCALE ADVANCES 2020; 2:4070-4076. [PMID: 36132795 PMCID: PMC9419229 DOI: 10.1039/d0na00429d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/16/2020] [Indexed: 06/16/2023]
Abstract
Bioinspired nanochannels whose functions are similar to those of the biological prototypes attract increasing attention due to their potential applications in signal transmission, mass transport, energy conversion, etc. Up to now, however, it is still a challenge to extract low-grade waste heat from the ambient environment in an aqueous solution. Herein, a thermo-driven nanofluidic system was developed to extract low-grade waste heat efficiently based on directed ionic transport at a micro-/nanoscale. A steady streaming current increases linearly with the temperature gradient, achieving as high as 14 nA at a temperature gradient of 47.5 °C (δT = 47.5 °C) through a 0.5 cm2 porous membrane (106 cm-2). And an unexpected theoretical power of 25.48 pW using a single nanochannel at a temperature difference of 40 °C has been achieved. This bioinspired multifunctional system broadens thermal energy recovery and will accelerate the evolution of nanoconfined mass transport for practical applications.
Collapse
Affiliation(s)
- Xiaolu Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- Qian Xuesen Laboratory of Space Technology Beijing 100049 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Long Li
- Qian Xuesen Laboratory of Space Technology Beijing 100049 PR China
| | - Wenyuan Xie
- Qian Xuesen Laboratory of Space Technology Beijing 100049 PR China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Bo Niu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Jianjun Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
5
|
Wei J, Ramírez-Hinestrosa S, Dobnikar J, Frenkel D. Effect of the interaction strength and anisotropy on the diffusio-phoresis of spherical colloids. SOFT MATTER 2020; 16:3621-3627. [PMID: 32101215 DOI: 10.1039/c9sm02053e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gradients in temperature, concentration or electrostatic potential cannot exert forces on a bulk fluid; they can, however, exert forces on a fluid in a microscopic boundary layer surrounding a (nano)colloidal solute, resulting in so-called phoretic flow. Here we present a simulation study of phoretic flow around a spherical colloid held fixed in a concentration gradient. We show that the resulting flow velocity depends non-monotonically on the strength of the colloid-fluid interaction. The reason for this non-monotonic dependence is that solute particles are effectively trapped in a shell around the colloid and cannot contribute to diffusio-phoresis. We also observe that the flow depends sensitively on the anisotropy of solute-colloid interaction.
Collapse
Affiliation(s)
- Jiachen Wei
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China and Department of Chemistry, University of Cambridge, CB21EW Cambridge, UK.
| | | | - Jure Dobnikar
- Department of Chemistry, University of Cambridge, CB21EW Cambridge, UK. and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China and Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, CB21EW Cambridge, UK.
| |
Collapse
|
6
|
Soleymani FA, Ripoll M, Gompper G, Fedosov DA. Dissipative particle dynamics with energy conservation: Isoenergetic integration and transport properties. J Chem Phys 2020; 152:064112. [PMID: 32061230 DOI: 10.1063/1.5119778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simulations of nano- to micro-meter scale fluidic systems under thermal gradients require consistent mesoscopic methods accounting for both hydrodynamic interactions and proper transport of energy. One such method is dissipative particle dynamics with energy conservation (DPDE), which has been used for various fluid systems with non-uniform temperature distributions. We propose an easily parallelizable modification of the velocity-Verlet algorithm based on local energy redistribution for each DPDE particle such that the total energy in a simulated system is conserved up to machine precision. Furthermore, transport properties of a DPDE fluid are analyzed in detail. In particular, an analytical approximation for the thermal conductivity coefficient is derived, which allows its a priori estimation for a given parameter set. Finally, we provide approximate expressions for the dimensionless Prandtl and Schmidt numbers, which characterize fluid transport properties and can be adjusted independently by a proper selection of model parameters. In conclusion, our results strengthen the DPDE method as a very robust approach for the investigation of mesoscopic systems with temperature inhomogeneities.
Collapse
Affiliation(s)
- Fatemeh A Soleymani
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marisol Ripoll
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
7
|
Chen X, Liu J, Fan Y. Hydrodynamics and Heat Transfer Characteristics of a Double Gradient Microchannel Porous Model: Fixed Gradients and Variable Gradients Structures. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangyang Chen
- School of Mechatronics Engineering Foshan University Guangdong Province Foshan 528000 China
| | - Jie Liu
- School of Mechatronics Engineering Foshan University Guangdong Province Foshan 528000 China
| | - Yanbin Fan
- School of Mechatronics Engineering Foshan University Guangdong Province Foshan 528000 China
| |
Collapse
|
8
|
Michelin S, Game S, Lauga E, Keaveny E, Papageorgiou D. Spontaneous onset of convection in a uniform phoretic channel. SOFT MATTER 2020; 16:1259-1269. [PMID: 31913392 DOI: 10.1039/c9sm02173f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phoretic mechanisms, whereby gradients of chemical solutes induce surface-driven flows, have recently been used to generate directed propulsion of patterned colloidal particles. When the chemical solutes diffuse slowly, an instability further provides active isotropic particles with a route to self-propulsion by spontaneously breaking the symmetry of the solute distribution. Here we show theoretically that, in a mechanism analogous to Bénard-Marangoni convection, phoretic phenomena can create spontaneous and self-sustained wall-driven mixing flows within a straight, chemically-uniform active channel. Such spontaneous flows do not result in any net pumping for a uniform channel but greatly modify the distribution and transport of the chemical solute. The instability is predicted to occur for a solute Péclet number above a critical value and for a band of finite perturbation wavenumbers. We solve the perturbation problem analytically to characterize the instability, and use both steady and unsteady numerical computations of the full nonlinear transport problem to capture the long-time coupled dynamics of the solute and flow within the channel.
Collapse
Affiliation(s)
- Sébastien Michelin
- LadHyX - Département de Mécanique, CNRS - Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | | | | | | | | |
Collapse
|
9
|
Michelin S, Lauga E. Universal optimal geometry of minimal phoretic pumps. Sci Rep 2019; 9:10788. [PMID: 31346194 PMCID: PMC6658517 DOI: 10.1038/s41598-019-46953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Unlike pressure-driven flows, surface-mediated phoretic flows provide efficient means to drive fluid motion on very small scales. Colloidal particles covered with chemically-active patches with nonzero phoretic mobility (e.g. Janus particles) swim using self-generated gradients, and similar physics can be exploited to create phoretic pumps. Here we analyse in detail the design principles of phoretic pumps and show that for a minimal phoretic pump, consisting of 3 distinct chemical patches, the optimal arrangement of the patches maximizing the flow rate is universal and independent of chemistry.
Collapse
Affiliation(s)
- Sébastien Michelin
- LadHyX - Département de Mécanique, Ecole Polytechnique - CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom.
| |
Collapse
|
10
|
Lee S, Park S, Kim W, Moon S, Kim HY, Lee H, Kim SJ. Nanoelectrokinetic bufferchannel-less radial preconcentrator and online extractor by tunable ion depletion layer. BIOMICROFLUIDICS 2019; 13:034113. [PMID: 31186822 PMCID: PMC6542650 DOI: 10.1063/1.5092789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/14/2019] [Indexed: 05/27/2023]
Abstract
Among various preconcentration strategies using nanofluidic platforms, a nanoscale electrokinetic phenomenon called ion concentration polarization (ICP) has been extensively utilized due to several advantages such as high preconcentration factor and no need of complex buffer exchange process. However, conventional ICP preconcentrator had difficulties in the recovery of preconcentrated sample and complicated buffer channels. To overcome these, bufferchannel-less radial micro/nanofluidic preconcentrator was developed in this work. Radially arranged microchannel can maximize the micro/nano membrane interface so that the samples were preconcentrated from each microchannel. All of preconcentrated plugs moved toward the center pipette tip and can be easily collected by just pulling out the tip installed at the center reservoir. For a simple and cost-effective fabrication, a commercial printer was used to print the nanoporous membrane as "Nafion-junction device." Various analytes such as polystyrene particle, fluorescent dye, and dsDNA were preconcentrated and extracted with the recovery ratio of 85.5%, 79.0%, and 51.3%, respectively. Furthermore, we used a super inkjet printer to print the silver electrode instead of nanoporous membrane to preconcentrate either type of charged analytes as "printed-electrode device." A Faradaic reaction was used as the main mechanism, and we successfully demonstrated the preconcentration of either negatively or positively charged analytes. The presented bufferchannel-less radial preconcentrator would be utilized as a practical and handy platform for analyzing low-abundant molecules.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungmin Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | | | | | | | - Hyomin Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, South Korea
| | - Sung Jae Kim
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
11
|
Howard MP, Nikoubashman A, Palmer JC. Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Miloh T. Light-induced thermoosmosis about conducting ellipsoidal nanoparticles. Proc Math Phys Eng Sci 2019. [DOI: 10.1098/rspa.2018.0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We consider the central problem of a non-spherical (ellipsoidal) polarizable (metallic) nanoparticle freely suspended in a conducting liquid phase which is irradiated (heated) by a laser under the Rayleigh (electrostatic) approximation. It is shown that, unlike the case of perfectly symmetric (spherical) particles, the surface temperature of general orthotropic particles exposed to continuous laser irradiation is
not uniform!
Thus, the induced surface slip (Soret type) velocity may lead to a self-induced thermoosmotic flow (sTOF) about the particle, in a similar manner to the electroosmotic flow driven by the Helmholtz—Smoluchowski slippage. Using the recent advancement in the theory of Lamé functions and ellipsoidal harmonics, we analytically present new solutions for two key physical problems. (i) Heat conduction and temperature distribution inside and outside a conducting laser-irradiated homogeneous tri-axial ellipsoid which is subjected to uniform Joule heating. (ii) Creeping (Stokes) sTOF around a fixed impermeable metallic ellipsoidal nanoparticle driven by a Soret-type surface slip velocity (i.e. proportional to the surface-temperature gradient).
Collapse
Affiliation(s)
- Touvia Miloh
- School of Mechanical Engineering, University of Tel-Aviv, Tel-Aviv 69978, Israel
| |
Collapse
|
13
|
Lou X, Yu N, Liu R, Chen K, Yang M. Dynamics of a colloidal particle near a thermoosmotic wall under illumination. SOFT MATTER 2018; 14:1319-1326. [PMID: 29368782 DOI: 10.1039/c7sm02196h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of light on colloidal particles in solution are multiple, including transfer of photonic linear/angular momentum and heating of the particles or their surroundings. The temperature increase around colloidal particles due to light heating can drive a thermoosmotic flow along a nearby boundary wall, which significantly influences the motion of the particles. Here we perform mesoscopic dynamics simulations to study two typical scenarios, where thermoosmosis is critical. In the first scenario, we consider a light-absorbing colloidal particle heated by uniform illumination. Depending on the fluid-wall interactions, the thermoosmotic flow generated by the wall can exert a long-ranged hydrodynamic attraction or repulsion on the "hot" Brownian particle, which leads to a strong accumulation/depletion of the particle to/from the boundary. In the second scenario, we investigate the motion of a colloidal particle confined by an optical tweezer in a light-absorbing solution. In this case, thermoosmosis can induce a unidirectional rotation of the trapped particle, whose direction is determined by thermoosmotic properties of the wall. We show that colloidal particles near a thermoosmotic wall exhibit rich dynamics. Our results can be applied for the manipulation of colloidal particles in microfluidics.
Collapse
Affiliation(s)
- Xin Lou
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| | | | | | | | | |
Collapse
|
14
|
Abstract
Colloidal migration in a temperature gradient is referred to as thermophoresis. In contrast to particles with a spherical shape, we show that elongated colloids may have a thermophoretic response that varies with the colloid orientation. Remarkably, this can translate into a non-vanishing thermophoretic force in the direction perpendicular to the temperature gradient. Opposite to the friction force, the thermophoretic force of a rod oriented with the temperature gradient can be larger or smaller than when oriented perpendicular to it. The precise anisotropic thermophoretic behavior clearly depends on the colloidal rod aspect ratio, and also on its surface details, which provides an interesting tunability to the devices constructed based on this principle. By means of mesoscale hydrodynamic simulations, we characterize this effect for different types of rod-like colloids.
Collapse
Affiliation(s)
- Zihan Tan
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
15
|
Orlishausen M, Butzhammer L, Schlotbohm D, Zapf D, Köhler W. Particle accumulation and depletion in a microfluidic Marangoni flow. SOFT MATTER 2017; 13:7053-7060. [PMID: 28848950 DOI: 10.1039/c7sm00954b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermosolutal and thermocapillary Marangoni convection at a liquid-gas interface in a microchannel structure of approximately 100 × 90 μm2 cross section creates a localized vortex that acts as a trap for micrometer and sub-micrometer sized tracer particles. Next to the vortex, depleted volumes appear that are entirely cleared of particles. This particle redistribution is caused by collisions of the tracers with the meniscus, which push the particles back onto the critical streamline with one particle radius distance to the meniscus. The streamlines between the meniscus and the critical streamline feed the depleted regions. Since the critical streamline depends on the particle radius, the effect leads to a particle fractionation according to their size. Diffusion allows only small particles to escape from the trap. Larger particles are permanently confined and their diffusion is rectified after every revolution at the meniscus, which produces a ratchet effect and increases the particle localization within the vortex.
Collapse
Affiliation(s)
- M Orlishausen
- Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | | | | | | | |
Collapse
|
16
|
Gargiulo J, Brick T, Violi IL, Herrera FC, Shibanuma T, Albella P, Requejo FG, Cortés E, Maier SA, Stefani FD. Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. NANO LETTERS 2017; 17:5747-5755. [PMID: 28806511 DOI: 10.1021/acs.nanolett.7b02713] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Optical printing holds great potential to enable the use of the vast variety of colloidal nanoparticles (NPs) in nano- and microdevices and circuits. By means of optical forces, it enables the direct assembly of NPs, one by one, onto specific positions of solid surfaces with great flexibility of pattern design and no need of previous surface patterning. However, for unclear causes it was not possible to print identical NPs closer to each other than 300 nm. Here, we show that the repulsion restricting the optical printing of close by NPs arises from light absorption by the printed NPs and subsequent local heating. By optimizing heat dissipation, it is possible to reduce the minimum separation between NPs. Using a reduced graphene oxide layer on a sapphire substrate, we demonstrate for the first time the optical printing of Au-Au NP dimers. Modeling the experiments considering optical, thermophoretic, and thermo-osmotic forces we obtain a detailed understanding and a clear pathway for the optical printing fabrication of complex nano structures and circuits based on connected colloidal NPs.
Collapse
Affiliation(s)
- Julian Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Thomas Brick
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Facundo C Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Toshihiko Shibanuma
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Pablo Albella
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
- University Institute for Intelligent Systems and Numerical Applications in Engineering (SIANI), University of Las Palmas de Gran Canaria , 35017, Las Palmas de Gran Canaria, Spain
| | - Félix G Requejo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Güiraldes 2620, C1428EAH Ciudad de Buenos Aires, Argentina
| |
Collapse
|
17
|
Yang M, Liu R, Ye F, Chen K. Mesoscale simulation of phoretically osmotic boundary conditions. SOFT MATTER 2017; 13:647-657. [PMID: 27991635 DOI: 10.1039/c6sm02516a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Boundary walls can drive the tangential flow of fluids by phoretic osmosis when exposed to a gradient field, including chemical, thermal or electric potential gradient. At the microscale, such boundary driving mechanisms become quite pronounced. Here, we propose a mesoscale strategy to simulate the phoretically osmotic boundaries, in which the microscopic fluid-wall interactions are coarse-grained into the bounce-back or specular reflection, and the phoretically osmotic force is generated by selectively reversing the tangential velocity of specific fluid particles near the boundary wall. With this scheme, the phoretically osmotic boundary can be realized with a minimal modification to the widely used mesoscopic no-slip/slip hydrodynamic boundary condition. Its implementation is quite efficient and the resulting phoretically osmotic flow is flexibly tunable. Its validity is verified by performing extensive mesoscale simulations for both the diffusioosmotic and thermoosmotic boundaries. In particular, we use the proposed scheme to investigate fluid transport driven by the phoretic osmosis in microfluidic systems and the effects of the diffusioosmosis on the dynamics of active catalytic colloidal particles. Our work thus offers new possibilities to study the phoretically osmotic effect in active complex fluids and microfluidic systems by simulation, where the gradient fields are ubiquitous.
Collapse
Affiliation(s)
- Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Riu Liu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
18
|
Shen M, Ye F, Liu R, Chen K, Yang M, Ripoll M. Chemically driven fluid transport in long microchannels. J Chem Phys 2016; 145:124119. [DOI: 10.1063/1.4963721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mingren Shen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Liu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Marisol Ripoll
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|