1
|
Reich M, Colla T, Likos CN. Structural transitions of ionic microgel solutions driven by circularly polarized electric fields. SOFT MATTER 2025; 21:1516-1528. [PMID: 39879073 DOI: 10.1039/d4sm01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla et al., ACS Nano, 2018, 12, 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions via a static, time averaged polarizing charge at the particle surface. In such a coarse-graining framework, the induced dipole interactions are controlled by external parameters such as the field strength and frequency, ionic strength, as well as microgel charge and concentration, thus providing a convenient route to induce different self-assembly scenarios through experimentally adjustable quantities. In contrast to the case of linearly polarized fields, dipole interactions in the case of CP light are purely repulsive in the direction perpendicular to the polarization plane, while featuring an in-plane attractive well. As a result, the CP field induces layering of planar sheets arranged perpendicularly to the field direction, in strong contrast to the chain formation observed in the case of linear polarizations. Depending on the field strength and particle concentration, in-plane crystallization can also take place. Combining molecular dynamics (MD) simulations and the liquid-state hypernetted-chain (HNC) formalism, we herein investigate the emergence of layering formation and in-plane crystal ordering as the dipole strength and microgel concentration are changed over a wide region of parameter space.
Collapse
Affiliation(s)
- Markus Reich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
2
|
Elgailani A, Maloney CE. A multi-body finite element model for hydrogel packings: linear response to shear. SOFT MATTER 2025; 21:1363-1372. [PMID: 39851254 DOI: 10.1039/d4sm00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
We study a multi-body finite element model of a packing of hydrogel particles using the Flory-Rehner constitutive law to model the deformation of the swollen polymer network. We show that while the dependence of the pressure, Π, on the effective volume fraction, ϕ, is virtually identical to a monolithic Flory material, the shear modulus, μ, behaves in a non-trivial way. μ increases monotonically with Π from zero and remains below about 80% of the monolithic Flory value at the largest Π we study here. The local shear strain in the particles has a large spatial variation. Local strains near the centers of the particles are all roughly equal to the applied shear strain, but the local strains near the contact facets are much smaller and depend on the orientation of the facet. We show that the slip between particles at the facets depends strongly on the orientation of the facet and is, on average, proportional to the component of the applied shear strain resolved onto the facet orientation. This slip screens the stress transmission and results in a reduction of the shear modulus relative to what one would obtain if the particles were welded together at the facet. Surprisingly, given the reduction in the shear modulus arising from the facet slip, and the spatial variations in the local shear strain inside the particles themselves, the deformation of the particle centroids is rather homogeneous with the strains of the Delaunay triangles having fluctuations of only order ±5%. These results should open the way to construction of quantitative estimates of the shear modulus in highly compressed packings via mean-field, effective-medium type approaches.
Collapse
Affiliation(s)
- Ahmed Elgailani
- Department of Mechanical and Industrial Engineering, Northeastern University, USA.
| | - Craig E Maloney
- Department of Mechanical and Industrial Engineering, Northeastern University, USA.
| |
Collapse
|
3
|
López-Molina J, Groh S, Dzubiella J, Moncho-Jordá A. Nonequilibrium relaxation of soft responsive colloids. J Chem Phys 2024; 161:094902. [PMID: 39225526 DOI: 10.1063/5.0221903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Stimuli-responsive macromolecules display large conformational changes during their dynamics, sometimes switching between states. Such a multi-stability is useful for the development of soft functional materials. Here, we introduce a mean-field dynamical density functional theory for a model of responsive colloids to study the nonequilibrium dynamics of a colloidal dispersion in time-dependent external fields, with a focus on the coupling of translational and conformational dynamics during their relaxation. Specifically, we consider soft Gaussian particles with a bimodal size distribution between two confining walls with time-dependent (switching-on and off) external gravitational and osmotic fields. We find a rich relaxation behavior of the systems in excellent agreement with particle-based Brownian dynamics computer simulations. In particular, we find time-asymmetric relaxations of integrated observables (wall pressures, mean size, and liquid center-of-mass) for activation/deactivation of external potentials, respectively, which are tunable by the ratio of translational and conformational diffusion time scales. Our work thus paves the way for studying the nonequilibrium relaxation dynamics of complex soft matter with multiple degrees of freedom and hierarchical relaxations.
Collapse
Affiliation(s)
- José López-Molina
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Sebastien Groh
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| | - Arturo Moncho-Jordá
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, University de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
4
|
Moncho-Jordá A, Groh S, Dzubiella J. External field-driven property localization in liquids of responsive macromolecules. J Chem Phys 2024; 160:024904. [PMID: 38189617 DOI: 10.1063/5.0177933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
We explore theoretically the effects of external potentials on the spatial distribution of particle properties in a liquid of explicitly responsive macromolecules. In particular, we focus on the bistable particle size as a coarse-grained internal degree of freedom (DoF, or "property"), σ, that moves in a bimodal energy landscape, in order to model the response of a state-switching (big-to-small) macromolecular liquid to external stimuli. We employ a mean-field density functional theory (DFT) that provides the full inhomogeneous equilibrium distributions of a one-component model system of responsive colloids (RCs) interacting with a Gaussian pair potential. For systems confined between two parallel hard walls, we observe and rationalize a significant localization of the big particle state close to the walls, with pressures described by an exact RC wall theorem. Application of more complex external potentials, such as linear (gravitational), osmotic, and Hamaker potentials, promotes even stronger particle size segregation, in which macromolecules of different size are localized in different spatial regions. Importantly, we demonstrate how the degree of responsiveness of the particle size and its coupling to the external potential tune the position-dependent size distribution. The DFT predictions are corroborated by Brownian dynamics simulations. Our study highlights the fact that particle responsiveness can be used to localize liquid properties and therefore helps to control the property- and position-dependent function of macromolecules, e.g., in biomedical applications.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Department of Applied Physics, University de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Sebastien Groh
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität 6 Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
5
|
Alziyadi MO, Denton AR. Osmotic swelling behavior of surface-charged ionic microgels. J Chem Phys 2023; 159:184901. [PMID: 37942869 DOI: 10.1063/5.0161027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
In recent years, ionic microgels have garnered much attention due to their unique properties, especially their stimulus-sensitive swelling behavior. The tunable response of these soft, permeable, compressible, charged colloidal particles is increasingly attractive for applications in medicine and biotechnologies, such as controlled drug delivery, tissue engineering, and biosensing. The ability to model and predict variation of the osmotic pressure of a single microgel with respect to changes in particle properties and environmental conditions proves vital to such applications. In this work, we apply both nonlinear Poisson-Boltzmann theory and molecular dynamics simulation to ionic microgels (macroions) in the cell model to compute density profiles of microions (counterions, coions), single-microgel osmotic pressure, and equilibrium swelling ratios of spherical microgels whose fixed charge is confined to the macroion surface. The basis of our approach is an exact theorem that relates the electrostatic component of the osmotic pressure to the microion density profiles. Close agreement between theory and simulation serves as a consistency check to validate our approach. We predict that surface-charged microgels progressively deswell with increasing microgel concentration, starting well below close packing, and with increasing salt concentration, in qualitative agreement with experiments. Comparison with previous results for microgels with fixed charge uniformly distributed over their volume demonstrates that surface-charged microgels deswell more rapidly than volume-charged microgels. We conclude that swelling behavior of ionic microgels in solution is sensitive to the distribution of fixed charge within the polymer-network gel and strongly depends on bulk concentrations of both microgels and salt ions.
Collapse
Affiliation(s)
- Mohammed O Alziyadi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Alan R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
6
|
Zhou B, Gasser U, Fernandez-Nieves A. Poly(N-isopropylacrylamide) microgel swelling behavior and suspension structure studied with small-angle neutron scattering. Phys Rev E 2023; 108:054604. [PMID: 38115405 DOI: 10.1103/physreve.108.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/11/2023] [Indexed: 12/21/2023]
Abstract
Microgels are of high interest for applications and as model systems due to their volume response to external stimuli. We use small-angle neutron scattering to measure the form and structure factors of poly(N-isopropylacrylamide) microgels in dilute and concentrated suspensions and find that microgels keep a constant size up to a concentration, above which they deswell. This happens before random-close packing. We emphasize suspension polydispersity must be considered to obtain accurate form and structure factors. Our results are compatible with microgel deswelling triggered by the osmotic pressure set by counterions associated to charged groups in the microgel periphery, which sharply increases when the counterion clouds surrounding the microgels percolate throughout the suspension volume.
Collapse
Affiliation(s)
- B Zhou
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - U Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - A Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain; ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain; and Institute for Complex Systems (UBICS), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Zhou B, Gasser U, Fernandez-Nieves A. Measuring the counterion cloud of soft microgels using SANS with contrast variation. Nat Commun 2023; 14:3827. [PMID: 37419879 DOI: 10.1038/s41467-023-39378-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
The behavior of microgels and other soft, compressible colloids depends on particle concentration in ways that are absent in their hard-particulate counterparts. For instance, poly-N-isopropylacrylamide (pNIPAM) microgels can spontaneously deswell and reduce suspension polydispersity when concentrated enough. Despite the pNIPAM network in these microgels is neutral, the key to understanding this distinct behavior relies on the existence of peripheric charged groups, responsible for providing colloidal stability when deswollen, and the associated counterion cloud. When in close proximity, clouds of different particles overlap, effectively freeing the associated counterions, which are then able to exert an osmotic pressure that can potentially cause the microgels to decrease their size. Up to now, however, no direct measurement of such an ionic cloud exists, perhaps even also for hard colloids, where it is referred to as an electric double layer. Here, we use small-angle neutron scattering with contrast variation with different ions to isolate the change in the form factor directly related to the counterion cloud, and obtain its radius and width. Our results highlight that the modeling of microgel suspensions must unavoidably and explicitly consider the presence of this cloud, which exists for nearly all microgels synthesized today.
Collapse
Affiliation(s)
- Boyang Zhou
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen, Switzerland.
| | - Alberto Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, Carrer de Martí i Franqués 1, Barcelona, 08028, Spain
- ICREA-Institucio Catalana de Recerca i Estudis Avançats, Barcelona, 08028, Spain
- Institute for Complex Systems (UBICS), University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
8
|
Bossa GV, May S. Bragg-Williams Theory for Particles with a Size-Modulating Internal Degree of Freedom. Molecules 2023; 28:5060. [PMID: 37446721 DOI: 10.3390/molecules28135060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The field of soft matter teems with molecules and aggregates of molecules that have internal size-modulating degrees of freedom. Proteins, peptides, microgels, polymers, micelles, and even some colloids can exist in multiple-often just two dominating-states with different effective sizes, where size can refer to the volume or to the cross-sectional area for particles residing on surfaces. The size-dependence of their accessible states renders the behavior of these particles pressure-sensitive. The Bragg-Williams model is among the most simple mean-field methods to translate the presence of inter-particle interactions into an approximate phase diagram. Here, we extend the Bragg-Williams model to account for the presence of particles that are immersed in a solvent and exist in two distinct states, one occupying a smaller and the other one a larger size. The basis of the extension is a lattice-sublattice approximation that we use to host the two size-differing states. Our model includes particle-solvent interactions that act as an effective surface tension between particles and solvent and are ignorant of the state in which the particles reside. We analyze how the energetic preference of the particles for one or the other state affects the phase diagrams. The possibility of a single phase-two phases-single phase sequence of phase transitions as a function of increasing temperature is demonstrated.
Collapse
Affiliation(s)
- Guilherme Volpe Bossa
- Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
9
|
Moncho-Jordá A, Göth N, Dzubiella J. Liquid structure of bistable responsive macromolecules using mean-field density-functional theory. SOFT MATTER 2023; 19:2832-2846. [PMID: 37000605 DOI: 10.1039/d2sm01523d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Macromolecular crowding typically applies to biomolecular and polymer-based systems in which the individual particles often feature a two-state folded/unfolded or coil-to-globule transition, such as found for proteins and peptides, DNA and RNA, or supramolecular polymers. Here, we employ a mean-field density functional theory (DFT) of a model of soft and bistable responsive colloids (RCs) in which the size of the macromolecule is explicitly resolved as a degree of freedom living in a bimodal 'Landau' energy landscape (exhibiting big and small states), thus directly responding to the crowding environment. Using this RC-DFT we study the effects of self-crowding on the liquid bulk structure and thermodynamics for different energy barriers and softnesses of the bimodal energy landscape, in conditions close to the coil-to-globule transition. We find substantial crowding effects on the internal distributions, a complex polydispersity behavior, and quasi-universal compression curves for increasing (generalized) packing fractions. Moreover, we uncover distinct signatures of bimodal versus unimodal behavior in the particle compression. Finally, the analysis of the pair structure - derived from the test particle route - reveals that the microstructure of the liquid is quite inhomogeneous due to local depletion effects, tuneable by particle softness.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Nils Göth
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| |
Collapse
|
10
|
Göth N, Baul U, Dzubiella J. Active responsive colloids driven by intrinsic dichotomous noise. Phys Rev E 2022; 106:064611. [PMID: 36671078 DOI: 10.1103/physreve.106.064611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
We study the influence of intrinsic noise on the structure and dynamics of responsive colloids (RCs), which actively change their size and mutual interactions. The colloidal size is explicitly resolved in our RC model as an internal degree of freedom (DOF) in addition to the particle translation. A Hertzian pair potential between the RCs leads to repulsion and shrinking of the particles, resulting in an explicit responsiveness of the system to self-crowding. To render the colloids active, their size is internally driven by a dichotomous noise, randomly switching ("breathing") between growing and shrinking states with a predefined rate, as motivated by recent experiments on synthetic active colloids. The polydispersity of this dichotomous active responsive colloid (D-ARC) model can be tuned by the parameters of the noise. Utilizing stochastic computer simulations, we study crowding effects on the spatial distributions, relaxation times, and self-diffusion of dense suspensions of the D-ARCs. We find a substantial influence of the "built-in" intrinsic noise on the system's behavior, in particular, transitions from unimodal to bimodal size distributions for an increasing colloid density as well as intrinsic noise-modified diffusive translational dynamics. We conclude that controlling the noise of internal DOFs of a macromolecule or cell is a powerful tool for active colloidal materials to enable autonomous changes in the system's collective structure and dynamics towards the adaptation of macroscopic properties to external perturbations.
Collapse
Affiliation(s)
- Nils Göth
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Upayan Baul
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
11
|
Nickel AC, Denton AR, Houston JE, Schweins R, Plivelic TS, Richtering W, Scotti A. Beyond simple self-healing: How anisotropic nanogels adapt their shape to their environment. J Chem Phys 2022; 157:194901. [DOI: 10.1063/5.0119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The response of soft colloids to crowding depends sensitively on the particles’ compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.
Collapse
Affiliation(s)
- Anne C. Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | | | - Ralf Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Tomàs S. Plivelic
- MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
12
|
Ranganathan VT, Bazmi S, Wallin S, Liu Y, Yethiraj A. Is Ficoll a Colloid or Polymer? A Multitechnique Study of a Prototypical Excluded-Volume Macromolecular Crowder. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| |
Collapse
|
13
|
Gaindrik P, Baul U, Dzubiella J. Active responsive colloids coupled to different thermostats. Phys Rev E 2022; 106:014613. [PMID: 35974513 DOI: 10.1103/physreve.106.014613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
We introduce a model of active responsive colloids (ARCs) in which an internal degree of freedom (DoF) of a single colloidal particle is "activated" by coupling it to a different thermostat than for the translational DoFs. As for the responsive internal DoF, we consider specifically the size (diameter) of the spherical particles, which is confined by a harmonic parent potential being either entropic or energetic in nature. The ARCs interact via a repulsive Hertzian pair potential, appropriate to model hydrogels or elastic colloids, and are studied for various densities using Brownian dynamics simulations. We tune the internal activity in the nonequilibrium steady state by scanning through a wide range of internal temperatures, both smaller ("colder") and larger ("hotter") than the translational temperature. The results show a rich and intriguing behavior for the emergent property distributions, colloidal pair structure, and the diffusive translational dynamics controlled by the internal activity, substantially depending on whether the internal DoF moves in an entropic or energetic potential. We discuss theoretical thermal limits and phenomenological models which can explain some of the nonequilibrium trends qualitatively. Our study indicates that particle dynamical polydispersity as well as the structure and dynamics of dense macromolecular suspensions can be vastly tuned by internal activity in terms of internal "hot" or "cold" fluctuating states.
Collapse
Affiliation(s)
- Polina Gaindrik
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Upayan Baul
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
14
|
Scotti A, Schulte MF, Lopez CG, Crassous JJ, Bochenek S, Richtering W. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chem Rev 2022; 122:11675-11700. [PMID: 35671377 DOI: 10.1021/acs.chemrev.2c00035] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| |
Collapse
|
15
|
Shamana H, Dutcher JR. Transition in the Glassy Dynamics of Melts of Acid-Hydrolyzed Phytoglycogen Nanoparticles. Biomacromolecules 2022; 23:2040-2050. [PMID: 35390260 DOI: 10.1021/acs.biomac.2c00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The deformability, responsiveness, and tunability of soft nanoparticles (NPs) offer unique opportunities to learn about their complex properties and the interactions between particles. In the present study, we provide new insights into the physical properties of phytoglycogen (PG) NPs, which are soft, compact particles with a dendritic architecture that are produced in the kernels of sweet corn. In particular, we study PG NPs modified using acid hydrolysis, which not only reduces their diameter but also alters their stiffness, internal structure, and the interactions between particles in aqueous dispersions. We used steady shear rheology to determine the dependence of the relative zero-shear viscosity ηr of aqueous dispersions of acid-hydrolyzed PG NPs on the effective volume fraction ϕeff, which indicated a reduction in stiffness of the particles relative to that of native PG NPs. We quantified this difference by analyzing the nature of the colloidal glasses formed at high ϕeff. We measured a smaller value of the fragility index m for acid-hydrolyzed PG NP glasses than that for native PG NP glasses, indicating that acid-hydrolyzed PG NPs form stronger glasses and are therefore softer than native PG NPs. Unlike the native PG NPs, we observed a distinctive change in the character of the glass transition of the acid-hydrolyzed PG NPs as ϕeff was increased above ϕeff∼1: a crossover in the dependence of ηr on ϕeff from Vogel-Fulcher-Tammann behavior to a more gradual, Arrhenius-like behavior. By expressing the steady shear and oscillatory rheology data in terms of generalized Péclet numbers, we obtained collapse of the data onto master curves. We interpret this result in terms of the acid-hydrolyzed PG NPs predominantly interpenetrating neighboring particles at large ϕeff, for which fluctuations of the outer chains enhance the mobility of the particles and make α-relaxation times τα experimentally accessible.
Collapse
Affiliation(s)
- Hurmiz Shamana
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John R Dutcher
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
16
|
Höfken T, Strauch C, Schneider S, Scotti A. Changes in the Form Factor and Size Distribution of Nanogels in Crowded Environments. NANO LETTERS 2022; 22:2412-2418. [PMID: 35258981 DOI: 10.1021/acs.nanolett.2c00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle size disparities suppress crystallization. However, soft deformable nanogels can change the size of the larger particles in suspension and crystallize even at a high initial size-polydispersity. Using neutron scattering with contrast variation, the response of individual nanogels in crowded environments was probed, and an increase of the parameter describing size-polydispersity was found, which is often interpreted as deformation. Here, computer simulations are used to generate deformed nanogels and the corresponding form factor. The data are fitted with the spherical model used to analyze scattering data. The fits show the same qualitative increase of the parameter related to the size-polydispersity with increasing particle deformation. Starting from the simulated deformed spheres, we also reproduce experimental scattering data. A further analysis of the particle shows that the size disparities between nanogels do not increase significantly. In contrast, their shapes strongly vary from one nanogel to the other.
Collapse
Affiliation(s)
- Tom Höfken
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
17
|
Baul U, Göth N, Bley M, Dzubiella J. Modulating internal transition kinetics of responsive macromolecules by collective crowding. J Chem Phys 2021; 155:244902. [PMID: 34972378 DOI: 10.1063/5.0076139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Packing and crowding are used in biology as mechanisms to (self-)regulate internal molecular or cellular processes based on collective signaling. Here, we study how the transition kinetics of an internal "switch" of responsive macromolecules is modified collectively by their spatial packing. We employ Brownian dynamics simulations of a model of Responsive Colloids, in which an explicit internal degree of freedom-here, the particle size-moving in a bimodal energy landscape self-consistently responds to the density fluctuations of the crowded environment. We demonstrate that populations and transition times for the two-state switching kinetics can be tuned over one order of magnitude by "self-crowding." An exponential scaling law derived from a combination of Kramers' and liquid state perturbation theory is in very good agreement with the simulations.
Collapse
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Nils Göth
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Michael Bley
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Li Q, Peng X, Chen D, McKenna GB. Softness mapping of the concentration dependence of the dynamics in model soft colloidal systems. J Colloid Interface Sci 2021; 605:398-409. [PMID: 34332413 DOI: 10.1016/j.jcis.2021.07.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
The dynamics of a series of soft colloids comprised of polystyrene cores with poly(N-isopropylacrylamide) (PNIPAM) coronas was investigated by diffusing wave spectroscopy (DWS). The modulus of the coronas was varied by changing the cross-link density and we were able to interpret the results within a hard-soft mapping framework. The soft, swellable particle properties were modeled using an extended Flory-Rehner theory and a Hertzian pair potential. Following volume fraction jumps, softness effects on the concentration dependence of dynamics were determined, with a 'soft colloids make strong glass-forming liquid'-type of behavior observed close to the nominal glass transition volume fraction, φg. Such behavior from the current systems cannot be fully explained by the osmotic deswelling model alone. However, inspired by the soft-hard mapping from Schmiedeberg et al, [Europhys. Lett. 2011, 96(3), 36010] we estimated effective hard-sphere diameters and achieved a successful mapping of the α-relaxation times to a master curve below φg. Above φg, the curves no longer collapse but show strong deviations from a Vogel-Fulcher type of divergence onto soft jamming plateaux. Our results provide evidence that osmotic deswelling itself cannot fully explain the observed dynamics. Softness also plays an important role in the dynamics of soft, concentrated colloids.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Xiaoguang Peng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Dongjie Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Gregory B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
19
|
Franco S, Buratti E, Ruzicka B, Nigro V, Zoratto N, Matricardi P, Zaccarelli E, Angelini R. Volume fraction determination of microgel composed of interpenetrating polymer networks of PNIPAM and polyacrylic acid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:174004. [PMID: 33524963 DOI: 10.1088/1361-648x/abe1ec] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Interpenetrated polymer network microgels, composed of crosslinked networks of poly(N-isopropylacrylamide) and polyacrylic acid (PAAc), have been investigated through rheological measurements at four different amounts of PAAc. Both PAAc content and crosslinking degree modify particle dimensions, mass and softness, thereby strongly affecting the volume fraction and the system viscosity. Here the volume fraction is derived from the flow curves at low concentrations by fitting the zero-shear viscosity with the Einstein-Batchelor equation which provides a parameterkto shift weight concentration to volume fraction. We find that particles with higher PAAc content and crosslinker are characterized by a greater value ofkand therefore by larger volume fractions when compared to softer particles. The packing fractions obtained from rheological measurements are compared with those from static light scattering for two PAAc contents revealing a good agreement. Moreover, the behaviour of the viscosity as a function of packing fraction, at room temperature, has highlighted an Arrhenius dependence for microgels synthesized with low PAAc content and a Vogel-Fulcher-Tammann dependence for the highest investigated PAAc concentration. A comparison with the hard spheres behaviour indicates a steepest increase of the viscosity with decreasing particles softness. Finally, the volume fraction dependence of the viscosity at a fixed PAAc and at two different temperatures, below and above the volume phase transition, shows a quantitative agreement with the structural relaxation time measured through dynamic light scattering indicating that interpenetrated polymer network microgels softness can be tuned with PAAc and temperature and that, depending on particle softness, two different routes are followed.
Collapse
Affiliation(s)
- S Franco
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria (SBAI), Sapienza Università di Roma, 00185 Roma, Italy
- Instituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy
| | - E Buratti
- Instituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy
| | - B Ruzicka
- Instituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Roma, Italy
| | - V Nigro
- ENEA Centro Ricerche Frascati, Via Enrico Fermi, 45, 00044 Frascati, Italy
| | - N Zoratto
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Roma, Italy
| | - P Matricardi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Roma, Italy
| | - E Zaccarelli
- Instituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Roma, Italy
| | - R Angelini
- Instituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
20
|
Gnan N, Camerin F, Del Monte G, Ninarello A, Zaccarelli E. Dynamical properties of different models of elastic polymer rings: Confirming the link between deformation and fragility. J Chem Phys 2021; 154:154901. [PMID: 33887924 DOI: 10.1063/5.0041264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We report extensive numerical simulations of different models of 2D polymer rings with internal elasticity. We monitor the dynamical behavior of the rings as a function of the packing fraction to address the effects of particle deformation on the collective response of the system. In particular, we compare three different models: (i) a recently investigated model [N. Gnan and E. Zaccarelli, Nat. Phys. 15, 683 (2019)] where an inner Hertzian field providing the internal elasticity acts on the monomers of the ring, (ii) the same model where the effect of such a field on the center of mass is balanced by opposite forces, and (iii) a semi-flexible model where an angular potential between adjacent monomers induces strong particle deformations. By analyzing the dynamics of the three models, we find that in all cases, there exists a direct link between the system fragility and particle asphericity. Among the three, only the first model displays anomalous dynamics in the form of a super-diffusive behavior of the mean-squared displacement and of a compressed exponential relaxation of the density auto-correlation function. We show that this is due to the combination of internal elasticity and the out-of-equilibrium force self-generated by each ring, both of which are necessary ingredients to induce such a peculiar behavior often observed in experiments of colloidal gels. These findings reinforce the role of particle deformation, connected to internal elasticity, in driving the dynamical response of dense soft particles.
Collapse
Affiliation(s)
- Nicoletta Gnan
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Fabrizio Camerin
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Giovanni Del Monte
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Andrea Ninarello
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Emanuela Zaccarelli
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| |
Collapse
|
21
|
Baul U, Dzubiella J. Structure and dynamics of responsive colloids with dynamical polydispersity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:174002. [PMID: 33443239 DOI: 10.1088/1361-648x/abdbaa] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Dynamical polydispersity in single-particle properties, for example a fluctuating particle size, shape, charge density, etc, is intrinsic to responsive colloids (RCs), such as biomacromolecules or microgels, but is typically not resolved in coarse-grained mesoscale simulations. Here, we present Brownian dynamics simulations of suspensions of RCs modeling soft hydrogel colloids, for which the size of the individual particles is an explicitly resolved (Gaussian) degree of freedom and dynamically responds to the local interacting environment. We calculate the liquid structure, emergent size distributions, long-time diffusion, and property (size) relaxation kinetics for a wide range of densities and intrinsic property relaxation times in the canonical ensemble. Comparison to interesting reference cases, such as conventional polydisperse suspensions with a frozen parent distribution, or conventional monodisperse systems interacting with an effective pair potential for one fixed size, shows a significant spread in the structure and dynamics. The differences, most apparent in the high density regimes, are due to many-body correlations and the dynamical coupling between property and translation in RC systems, not explicitly accounted for in the conventional treatments. In particular, the translational diffusion in the RC systems is surprisingly close to the free (single RC) diffusion, mainly due to a cancellation of crowding and size compression effects. We show that an effective monodisperse pair potential can be constructed that describes the many-body correlations reasonably well by convoluting the RC pair potential with the density-dependent emergent size distributions and using a mean effective diffusion constant.
Collapse
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
22
|
Tennenbaum M, Anderson C, Hyatt JS, Do C, Fernandez-Nieves A. Internal structure of ultralow-crosslinked microgels: From uniform deswelling to phase separation. Phys Rev E 2021; 103:022614. [PMID: 33736086 DOI: 10.1103/physreve.103.022614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
We perform small angle neutron scattering on ultralow-crosslinked microgels and find that while in certain conditions both the particle size and the characteristic internal length scale change in unison, in other instances this is not the case. We show that nonuniform deswelling depends not only on particle size, but also on the particular way the various contributions to the free energy combine to result in a given size. Only when polymer-solvent demixing strongly competes with ionic or electrostatic effects do we observe nonuniform behavior, reflecting internal microphase separation. The results do not appreciably depend on particle number density; even in concentrated suspensions, we find that at relatively low temperature, where demixing is not very strong, the deswelling behavior is uniform, and that only at sufficiently high temperature, where demixing is very strong, does the microgel structure change akin to internal microphase separation.
Collapse
Affiliation(s)
- Michael Tennenbaum
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Caleb Anderson
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - John S Hyatt
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Alberto Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain.,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| |
Collapse
|
23
|
Hoti G, Caldera F, Cecone C, Rubin Pedrazzo A, Anceschi A, Appleton SL, Khazaei Monfared Y, Trotta F. Effect of the Cross-Linking Density on the Swelling and Rheological Behavior of Ester-Bridged β-Cyclodextrin Nanosponges. MATERIALS (BASEL, SWITZERLAND) 2021; 14:478. [PMID: 33498322 PMCID: PMC7864023 DOI: 10.3390/ma14030478] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022]
Abstract
The cross-linking density influences the physicochemical properties of cyclodextrin-based nanosponges (CD-NSs). Although the effect of the cross-linker type and content on the NSs performance has been investigated, a detailed study of the cross-linking density has never been performed. In this contribution, nine ester-bridged NSs based on β-cyclodextrin (β-CD) and different quantities of pyromellitic dianhydride (PMDA), used as a cross-linking agent in stoichiometric proportions of 2, 3, 4, 5, 6, 7, 8, 9, and 10 moles of PMDA for each mole of CD, were synthesized and characterized in terms of swelling and rheological properties. The results, from the swelling experiments, exploiting Flory-Rehner theory, and rheology, strongly showed a cross-linker content-dependent behavior. The study of cross-linking density allowed to shed light on the efficiency of the synthesis reaction methods. Overall, our study demonstrates that by varying the amount of cross-linking agent, the cross-linked structure of the NSs matrix can be controlled effectively. As PMDA βCD-NSs have emerged over the years as a highly versatile class of materials with potential applications in various fields, this study represents the first step towards a full understanding of the correlation between their structure and properties, which is a key requirement to effectively tune their synthesis reaction in view of any specific future application or industrial scale-up.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Claudio Cecone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Alberto Rubin Pedrazzo
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Anastasia Anceschi
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
- CNR-STIIMA, Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, C.so Pella 16, 13900 Biella, Italy
| | - Silvia Lucia Appleton
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Yousef Khazaei Monfared
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| |
Collapse
|
24
|
Levashov VA, Ryltsev RE, Chtchelkatchev NM. Structure of the simple harmonic-repulsive system in liquid and glassy states studied by the triple correlation function. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:025403. [PMID: 33063696 DOI: 10.1088/1361-648x/abb516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An efficient description of the structures of liquids and, in particular, the structural changes that happen with liquids on supercooling remains to be a challenge. The systems composed of soft particles are especially interesting in this context because they often demonstrate non-trivial local orders that do not allow to introduce the concept of the nearest-neighbor shell. For this reason, the use of some methods, developed for the structure analysis of atomic liquids, is questionable for the soft-particle systems. Here we report about our investigations of the structure of the simple harmonic-repulsive liquid in 3D using the triple correlation function (TCF), i.e., the method that does not rely on the nearest neighbor concept. The liquid is considered at reduced pressure (P = 1.8) at which it exhibits remarkable stability against crystallization on cooling. It is demonstrated that the TCF allows addressing the development of the orientational correlations in the structures that do not allow drawing definite conclusions from the studies of the bond-orientational order parameters. Our results demonstrate that the orientational correlations, if measured by the heights of the peaks in the TCF, significantly increase on cooling. This rise in the orientational ordering is not captured properly by the Kirkwood's superposition approximation. Detailed considerations of the peaks' shapes in the TCF suggest the existence of a link between the orientational ordering and the slowdown of the system's dynamics. Our findings support the view that the development of the orientational correlations in liquids may play a significant role in the liquids' dynamics and that the considerations of the pair distribution function may not be sufficient to understand intuitively all the structural changes that happen with liquids on supercooling. In general, our results demonstrate that the considerations of the TCF are useful in the discussions of the liquid's structures beyond the pair density function and interpreting the results obtained with the bond-orientational order parameters.
Collapse
Affiliation(s)
- V A Levashov
- Technological Design Institute of Scientific Instrument Engineering, 630055, Novosibirsk, Russia
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia
| | - R E Ryltsev
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia
- Institute of Metallurgy, UB RAS, 620016, 101 Amundsen str., Ekaterinburg, Russia
- Ural Federal University, 620002, 19 Mira str,, Ekaterinburg, Russia
| | - N M Chtchelkatchev
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia
- Ural Federal University, 620002, 19 Mira str,, Ekaterinburg, Russia
| |
Collapse
|
25
|
Scotti A, Pelaez-Fernandez M, Gasser U, Fernandez-Nieves A. Osmotic pressure of suspensions comprised of charged microgels. Phys Rev E 2021; 103:012609. [PMID: 33601513 DOI: 10.1103/physreve.103.012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
We determine the osmotic pressure of microgel suspensions using membrane osmometry and dialysis, for microgels with different softnesses. Our measurements reveal that the osmotic pressure of solutions of both ionic and neutral microgels is determined by the free ions that leave the microgel periphery to maximize their entropy and not by the translational degrees of freedom of the microgels themselves. Furthermore, up to a given concentration it is energetically favorable for the microgels to maintain a constant volume without appreciable deswelling. The concentration where deswelling starts weakly depends on the crosslinker concentration, which affects the microgel dimension; we explain this by considering the dependence of the osmotic pressure and the microgel bulk modulus on the particle size.
Collapse
Affiliation(s)
- A Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - M Pelaez-Fernandez
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - U Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - A Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
- School of Physics, Georgia Institute of Technology, Atlanta, 30332 Georgia, USA
| |
Collapse
|
26
|
Scotti A, Houston JE, Brugnoni M, Schmidt MM, Schulte MF, Bochenek S, Schweins R, Feoktystov A, Radulescu A, Richtering W. Phase behavior of ultrasoft spheres show stable bcc lattices. Phys Rev E 2020; 102:052602. [PMID: 33327194 DOI: 10.1103/physreve.102.052602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
The phase behavior of supersoft spheres is explored using solutions of ultralow cross-linked poly(N-isopropylacrylamide)-based microgels as a model system. For these microgels, the effects of the electric charges on their surfaces can be neglected and therefore only the role of softness on the phase behavior is investigated. The samples show a liquid-to-crystal transition at higher volume fraction with respect to both hard spheres and stiffer microgels. Furthermore, stable body centered cubic (bcc) crystals are observed in addition to the expected face centered cubic (fcc) crystals. Small-angle x-ray and neutron scattering with contrast variation allow the characterization of both the microgel-to-microgel distance and the architecture of single microgels in crowded solutions. The measurements reveal that the stable bcc crystals depend on the interplay between the collapse and the interpenetration of the external shell of the ultralow cross-linked microgels.
Collapse
Affiliation(s)
- A Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - J E Houston
- European Spallation Source ERIC, Box 176, SE-221 00 Lund, Sweden
| | - M Brugnoni
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - M M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - M F Schulte
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - S Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - R Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - A Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, 85748 Garching, Germany
| | - A Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, 85748 Garching, Germany
| | - W Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
| |
Collapse
|
27
|
Lin YC, Rotenberg B, Dzubiella J. Structure and position-dependent properties of inhomogeneous suspensions of responsive colloids. Phys Rev E 2020; 102:042602. [PMID: 33212687 DOI: 10.1103/physreve.102.042602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Responsive particles, such as biomacromolecules or hydrogels, display a broad and polymodal distribution of conformations and have thus the ability to change their properties (e.g., size, shape, charge density, etc.) substantially in response to external fields or to their local environment (e.g., mediated by cosolutes or pH). Here we discuss the basic statistical mechanics for a model of responsive colloids (RCs) by introducing an additional "property" degree of freedom as a collective variable in a formal coarse-graining procedure. The latter leads to an additional one-body term in the coarse-grained (CG) free energy, defining a single-particle property distribution for an individual polydisperse RC. We argue that in the equilibrium thermodynamic limit such a CG system of RCs behaves like a conventional polydisperse system of nonresponsive particles. We then illustrate the action of external fields, which impose local (position-dependent) property distributions leading to nontrivial effects on the spatial one-body property and density profiles, even for an ideal (noninteracting) gas of RCs. We finally apply density-functional theory in the local density approximation to discuss the effects of particle interactions for specific examples of (i) a suspension of RCs in an external field linear in both position and property, (ii) a suspension of RCs with highly localized properties (sizes) confined between two walls, and (iii) a two-component suspension where an inhomogeneously distributed (nonresponsive) cosolute component, as found, e.g., in the studies of osmolyte- or salt-induced collapse or swelling transitions of thermosensitive polymers, modifies the local properties and density of the RC liquid.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
28
|
Scotti A, Brugnoni M, G Lopez C, Bochenek S, Crassous JJ, Richtering W. Flow properties reveal the particle-to-polymer transition of ultra-low crosslinked microgels. SOFT MATTER 2020; 16:668-678. [PMID: 31815271 DOI: 10.1039/c9sm01451a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploiting soft, adaptive microgels as building blocks for soft materials with controlled and predictable viscoelastic properties is of great interest for both industry and fundamental research. Here the flow properties of different poly(N-isopropylacrylamide) (pNIPAM) microgels are compared: regularly crosslinked versus ultra-low crosslinked (ULC) microgels. The latter are the softest microgels that can be produced via precipitation polymerization. The viscosity of ULC microgel suspensions at low concentrations can be described with models typically used for hard spheres and regularly crosslinked microgels. In contrast, at higher concentrations, ULC microgels show a much softer behavior compared to regularly crosslinked microgels. The increase of the storage modulus with concentration discloses that while for regularly crosslinked microgels the flow properties are mainly determined by the more crosslinked core, for ULC microgels the brush-like interaction is dominant at high packing fractions. Both the flow curves and the increase of the storage modulus with concentration indicates that ULC microgels can form glass and even reach an apparent jammed state despite their extreme softness. In contrast, the analysis of oscillatory frequency sweep measurements show that when approaching the glass transition the ultra-low crosslinked microgels behave as the regularly crosslinked microgels. This is consistent with a recent study showing that in this concentration range the equilibrium phase behavior of these ULC microgels is the one expected for regularly crosslinked microgels.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Brito ME, Denton AR, Nägele G. Modeling deswelling, thermodynamics, structure, and dynamics in ionic microgel suspensions. J Chem Phys 2019; 151:224901. [DOI: 10.1063/1.5129575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mariano E. Brito
- Institute of Complex Systems, ICS-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Gerhard Nägele
- Institute of Complex Systems, ICS-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
30
|
Levashov VA, Ryltsev R, Chtchelkatchev N. Anomalous behavior and structure of a liquid of particles interacting through the harmonic-repulsive pair potential near the crystallization transition. SOFT MATTER 2019; 15:8840-8854. [PMID: 31613306 DOI: 10.1039/c9sm01475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A characteristic property of many soft matter systems is an ultrasoft effective interaction between their structural units. This softness often leads to complex behavior. In particular, ultrasoft systems under pressure demonstrate polymorphism of complex crystal and quasicrystal structures. Therefore, it is of interest to investigate how different can be the structure of the fluid state in such systems at different pressures. Here we address this issue for a model liquid composed of particles interacting through the harmonic-repulsive pair potential. This system can form different crystal structures as the liquid is cooled. We find that, at certain pressures, the liquid exhibits unusual properties, such as a negative thermal expansion coefficient. Besides, the volume and the potential energy of the system can increase during crystallization. At certain pressures, the system demonstrates high stability against crystallization and it is hardly possible to crystallize it on the timescales of the simulations. To address the liquid's structure at high pressures, we consider the scaled pair distribution function (PDF) and the bond-orientational order (BOO) parameters. The marked change happening with the PDF, as pressure increases, is the splitting of the first peak which is caused by the appearance of non-negligible interactions with the second neighbors and the following rearrangement of the structure. Our findings suggest that non-trivial effects, usually explained by different interactions at different spatial scales, can also be observed in one-component systems with simple one-length-scale ultrasoft repulsive interactions.
Collapse
Affiliation(s)
- Valentin A Levashov
- Technological Design Institute of Scientific Instrument Engineering, 630055, Novosibirsk, Russia. and Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Moscow (Troitsk), Russia
| | - Roman Ryltsev
- Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Moscow (Troitsk), Russia and Institute of Metallurgy, UB RAS, 101 Amundsen str., 620016, Ekaterinburg, Russia and Ural Federal University, 19 Mira str., 620002, Ekaterinburg, Russia
| | - Nikolay Chtchelkatchev
- Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Moscow (Troitsk), Russia and Ural Federal University, 19 Mira str., 620002, Ekaterinburg, Russia and Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
31
|
Munaò G, Saija F. Monte Carlo simulation and integral equation study of Hertzian spheres in the low-temperature regime. J Chem Phys 2019; 151:134901. [PMID: 31594317 DOI: 10.1063/1.5121007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the behavior of Hertzian spheres in the fluid phase and in proximity of the freezing threshold by using Monte Carlo (MC) simulations and integral equation theories, based on the Ornstein-Zernike (OZ) approach. The study is motivated by the importance of the Hertzian model in representing a large class of systems interacting via soft interactions, such as star polymers or microgels. Radial distribution functions, structure factors, and excess entropy clearly show the reentrant behavior typical of the Hertzian fluid, well caught by both MC simulations and OZ theory. Then, we make use of some phenomenological one-phase criteria for testing their reliability in detecting the freezing threshold. All criteria provide evidence of the fluid-solid transition with different degrees of accuracy. This suggests the possibility to adopt these empirical rules to provide a quick and reasonable estimate of the freezing transition in model potentials of wide interest for soft matter systems.
Collapse
Affiliation(s)
- Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Franz Saija
- CNR-IPCF, Viale F. Stagno Alcontres 37, I-98158 Messina, Italy
| |
Collapse
|
32
|
Minami S, Suzuki D, Urayama K. Rheological aspects of colloidal gels in thermoresponsive microgel suspensions: formation, structure, and linear and nonlinear viscoelasticity. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Sbeih S, Mohanty PS, Morrow MR, Yethiraj A. Structural parameters of soft PNIPAM microgel particles as a function of crosslink density. J Colloid Interface Sci 2019; 552:781-793. [DOI: 10.1016/j.jcis.2019.05.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
34
|
Denton AR, Alziyadi MO. Osmotic pressure of permeable ionic microgels: Poisson-Boltzmann theory and exact statistical mechanical relations in the cell model. J Chem Phys 2019; 151:074903. [DOI: 10.1063/1.5091115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Mohammed O. Alziyadi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
35
|
|
36
|
Rovigatti L, Gnan N, Ninarello A, Zaccarelli E. Connecting Elasticity and Effective Interactions of Neutral Microgels: The Validity of the Hertzian Model. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00099] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Nicoletta Gnan
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Andrea Ninarello
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Emanuela Zaccarelli
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
37
|
Scotti A, Denton AR, Brugnoni M, Houston JE, Schweins R, Potemkin II, Richtering W. Deswelling of Microgels in Crowded Suspensions Depends on Cross-Link Density and Architecture. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00729] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 United States
| | - Monia Brugnoni
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Judith E. Houston
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
- European Spallation
Source ERIC, Box 176, SE-221 00 Lund, Sweden
| | - Ralf Schweins
- Institut Laue-Langevin
ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Igor I. Potemkin
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- DWI - Leibniz
Institute
for Interactive Materials, Aachen 52056, Germany
- National Research South
Ural State University, Chelyabinsk 454080, Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
- JARA, Jülich Aachen
Research Alliance, 52056 Aachen, Germany
| |
Collapse
|
38
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
39
|
Gasser U, Scotti A, Fernandez-Nieves A. Spontaneous deswelling of microgels controlled by counterion clouds. Phys Rev E 2019; 99:042602. [PMID: 31108698 DOI: 10.1103/physreve.99.042602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 06/09/2023]
Abstract
Concentrated poly(N-isopropylacrylamide) (pNIPAM) microgel suspensions at a fixed temperature below the deswelling transition of pNIPAM exhibit spontaneous particle deswelling. The microgels deswell before they are in direct contact and in polydisperse suspensions this deswelling is most pronounced for the largest microgel particles; as a consequence, the polydispersity of the suspension is reduced. Recently, we presented a model for this spontaneous deswelling that is based on the presence of counterions originating from charged groups on the surface of the pNIPAM microgels [A. Scotti et al., Proc. Natl. Acad. Sci. USA 113, 5576 (2016)PNASA60027-842410.1073/pnas.1516011113]. Here we present numerical Poisson-Boltzmann calculations of the electrostatic potential and osmotic pressure inside and outside a pNIPAM microgel that could trigger the observed deswelling at high particle concentrations.
Collapse
Affiliation(s)
- U Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - A Scotti
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - A Fernandez-Nieves
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
40
|
Responsive hydrogel colloids: Structure, interactions, phase behavior, and equilibrium and nonequilibrium transitions of microgel dispersions. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Rovigatti L, Gnan N, Tavagnacco L, Moreno AJ, Zaccarelli E. Numerical modelling of non-ionic microgels: an overview. SOFT MATTER 2019; 15:1108-1119. [PMID: 30543246 PMCID: PMC6371763 DOI: 10.1039/c8sm02089b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 05/03/2023]
Abstract
Microgels are complex macromolecules. These colloid-sized polymer networks possess internal degrees of freedom and, depending on the polymer(s) they are made of, can acquire a responsiveness to variations of the environment (temperature, pH, salt concentration, etc.). Besides being valuable for many practical applications, microgels are also extremely important to tackle fundamental physics problems. As a result, these last years have seen a rapid development of protocols for the synthesis of microgels, and more and more research has been devoted to the investigation of their bulk properties. However, from a numerical standpoint the picture is more fragmented, as the inherently multi-scale nature of microgels, whose bulk behaviour crucially depends on the microscopic details, cannot be handled at a single level of coarse-graining. Here we present an overview of the methods and models that have been proposed to describe non-ionic microgels at different length-scales, from the atomistic to the single-particle level. We especially focus on monomer-resolved models, as these have the right level of details to capture the most important properties of microgels, responsiveness and softness. We suggest that these microscopic descriptions, if realistic enough, can be employed as starting points to develop the more coarse-grained representations required to investigate the behaviour of bulk suspensions.
Collapse
Affiliation(s)
- Lorenzo Rovigatti
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Nicoletta Gnan
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Letizia Tavagnacco
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC
,
Paseo Manuel de Lardizabal 5
, 20018 San Sebastián
, Spain
- Donostia International Physics Center
,
Paseo Manuel de Lardizabal 4
, 20018 San Sebastian
, Spain
| | - Emanuela Zaccarelli
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| |
Collapse
|
42
|
Witte J, Kyrey T, Lutzki J, Dahl AM, Houston J, Radulescu A, Pipich V, Stingaciu L, Kühnhammer M, Witt MU, von Klitzing R, Holderer O, Wellert S. A comparison of the network structure and inner dynamics of homogeneously and heterogeneously crosslinked PNIPAM microgels with high crosslinker content. SOFT MATTER 2019; 15:1053-1064. [PMID: 30663759 DOI: 10.1039/c8sm02141d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Poly(N-isopropylacrylamide) microgel particles were prepared via a "classical" surfactant-free precipitation polymerization and a continuous monomer feeding approach. It is anticipated that this yields microgel particles with different internal structures, namely a dense core with a fluffy shell for the classical approach and a more even crosslink distribution in the case of the continuous monomer feeding approach. A thorough structural investigation of the resulting microgels with dynamic light scattering, atomic force microscopy and small angle neutron scattering was conducted and related to neutron spin echo spectroscopy data. In this way a link between structural and dynamic features of the internal polymer network was made.
Collapse
Affiliation(s)
- Judith Witte
- Institute of Chemistry, TU Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ghosh A, Chaudhary G, Kang JG, Braun PV, Ewoldt RH, Schweizer KS. Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions. SOFT MATTER 2019; 15:1038-1052. [PMID: 30657517 DOI: 10.1039/c8sm02014k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (c) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G' ∼ c5.64, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core-shell family.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
44
|
Shamana H, Grossutti M, Papp-Szabo E, Miki C, Dutcher JR. Unusual polysaccharide rheology of aqueous dispersions of soft phytoglycogen nanoparticles. SOFT MATTER 2018; 14:6496-6505. [PMID: 30043804 DOI: 10.1039/c8sm00815a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytoglycogen is a natural polysaccharide produced in the form of dense, 35 nm diameter nanoparticles by some varieties of plants such as sweet corn. The highly-branched, dendrimeric structure of phytoglycogen leads to interesting and useful properties such as softness and deformability of the particles, and a strong interaction with water. These properties make the particles ideal for use as unique additives in personal care, nutrition and biomedical formulations. In the present study, we describe rheology measurements of aqueous dispersions of phytoglycogen nanoparticles. The viscosity of the dispersions remained Newtonian up to large concentrations (∼20% w/w). For higher concentrations, the zero-shear viscosity increased dramatically, reaching values that exceeded that of the water solvent by six orders of magnitude at a concentration of 30% w/w and were well described by the Vogel-Fulcher-Tammann relation of glassy dynamics. The very large values of the zero-shear viscosity are coupled with significant deformation of the soft nanoparticles. We quantified the softness of the particles by performing osmotic pressure measurements on concentrated dispersions, obtaining a value of 15 kPa for the compressional modulus. For the most concentrated samples, we observed flow at stresses less than the apparent yield stress value determined by fitting the high strain rate data to the Herschel-Bulkley model. This behavior, similar to that of star polymer glasses, suggests the possibility of a hairy colloid particle geometry. Remarkably, phytoglycogen nanoparticles dispersed in water provide a very simple experimental realization of glass-forming dispersions of soft colloidal particles that can be used to validate theoretical models in detail.
Collapse
Affiliation(s)
- Hurmiz Shamana
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | | | | | | | |
Collapse
|
45
|
Colla T, Blaak R, Likos CN. Quenching of fully symmetric mixtures of oppositely charged microgels: the role of soft stiffness. SOFT MATTER 2018; 14:5106-5120. [PMID: 29876574 DOI: 10.1039/c8sm00441b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Using molecular dynamics simulations, we investigate the self-assembly of a coarse-grained binary system of oppositely charged microgels, symmetric in size and concentration. The microgel pair interactions are described by an effective pair potential which implicitly accounts for the averaged ionic contributions, in addition to a short-range elastic repulsion that accounts for the overlapping of the polymer chains, the latter being described by the Hertzian interaction. Particular emphasis is placed on the role played by the strength of the soft repulsive interaction on the resulting particle aggregation. It is found that the possibility of particle inter-penetration in oppositely charged soft particles results in a much wider variety of cluster morphologies in comparison with their hard-spheres counterparts. Specifically, the softness of the steric interactions enhances the competition between repulsive and attractive electrostatic interactions, leading to the formation of aggregates that are comprised of strongly bounded charged particles displaying a low degree of charge ordering.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, MG, Brazil
| | | | | |
Collapse
|
46
|
Colla T, Nunes Lopes L, Dos Santos AP. Ionic size effects on the Poisson-Boltzmann theory. J Chem Phys 2018; 147:014104. [PMID: 28688437 DOI: 10.1063/1.4990737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we develop a simple theory to study the effects of ionic size on ionic distributions around a charged spherical particle. We include a correction to the regular Poisson-Boltzmann equation in order to take into account the size of ions in a mean-field regime. The results are compared with Monte Carlo simulations and a density functional theory based on the fundamental measure approach and a second-order bulk expansion which accounts for electrostatic correlations. The agreement is very good even for multivalent ions. Our results show that the theory can be applied with very good accuracy in the description of ions with highly effective ionic radii and low concentration, interacting with a colloid or a nanoparticle in an electrolyte solution.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, CEP 35400-000 Ouro Preto, MG, Brazil
| | - Lucas Nunes Lopes
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
47
|
Weyer TJ, Denton AR. Concentration-dependent swelling and structure of ionic microgels: simulation and theory of a coarse-grained model. SOFT MATTER 2018; 14:4530-4540. [PMID: 29796467 DOI: 10.1039/c8sm00799c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We study swelling and structural properties of ionic microgel suspensions within a comprehensive coarse-grained model that combines the polymeric and colloidal natures of microgels as permeable, compressible, charged spheres governed by effective interparticle interactions. The model synthesizes the Flory-Rehner theory of cross-linked polymer gels, the Hertz continuum theory of effective elastic interactions, and a theory of density-dependent effective electrostatic interactions. Implementing the model using Monte Carlo simulation and thermodynamic perturbation theory, we compute equilibrium particle size distributions, swelling ratios, volume fractions, net valences, radial distribution functions, and static structure factors as functions of concentration. Trial Monte Carlo moves comprising particle displacements and size variations are accepted or rejected based on the total change in elastic and electrostatic energies. The theory combines first-order thermodynamic perturbation and variational free energy approximations. For illustrative system parameters, theory and simulation agree closely at concentrations ranging from dilute to beyond particle overlap. With increasing concentration, as microgels deswell, we predict a decrease in the net valence and an unusual saturation of pair correlations. Comparison with experimental data for deionized, aqueous suspensions of PNIPAM particles demonstrates the capacity of the coarse-grained model to predict and interpret measured swelling behavior.
Collapse
Affiliation(s)
- Tyler J Weyer
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA.
| | | |
Collapse
|
48
|
Colla T, Mohanty PS, Nöjd S, Bialik E, Riede A, Schurtenberger P, Likos CN. Self-Assembly of Ionic Microgels Driven by an Alternating Electric Field: Theory, Simulations, and Experiments. ACS NANO 2018; 12:4321-4337. [PMID: 29634232 DOI: 10.1021/acsnano.7b08843] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The structural properties of a system of ionic microgels under the influence of an alternating electric field are investigated both theoretically and experimentally. This combined investigation aims to shed light on the structural transitions that can be induced by changing either the driving frequency or the strength of the applied field, which range from string-like formation along the field to crystal-like structures across the orthogonal plane. In order to highlight the physical mechanisms responsible for the observed particle self-assembly, we develop a coarse-grained description, in which effective interactions among the charged microgels are induced by both equilibrium ionic distributions and their time-averaged hydrodynamic responses to the applied field. These contributions are modeled by the buildup of an effective dipole moment at the microgels backbones, which is partially screened by their ionic double layer. We show that this description is able to capture the structural properties of this system, allowing for very good agreement with the experimental results. The model coarse-graining parameters are indirectly obtained via the measured pair distribution functions and then further assigned with a clear physical interpretation, allowing us to highlight the main physical mechanisms accounting for the observed self-assembly behavior.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física , Universidade Federal de Ouro Preto , CEP 35400-000 Ouro Preto , Minas Gerais , Brazil
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , 1090 Vienna , Austria
| | - Priti S Mohanty
- Division of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
- School of Chemical Technology , Kalinga Institute of Industrial Technology (KIIT) , Bhubaneswar 751024 , India
| | - Sofi Nöjd
- Division of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Erik Bialik
- Division of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Aaron Riede
- Division of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
| | | | - Christos N Likos
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , 1090 Vienna , Austria
| |
Collapse
|
49
|
Rodríguez-Díaz F, Castellanos-Suárez A, Lozsán A. A phenomenological order approach to the volume phase transition in microgel particles. Phys Chem Chem Phys 2017; 19:16541-16554. [DOI: 10.1039/c7cp02567j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A phenomenological insight into the volume transition of microgel particles via nematic-like ordering behavior through solvation processes of a polymer matrix.
Collapse
Affiliation(s)
- Fernando Rodríguez-Díaz
- Instituto Venezolano de Investigaciones Cientificas
- Centro de Estudios Interdisciplinarios de la Fisica. Caracas
- Venezuela
- Venezuela
| | - Aly Castellanos-Suárez
- Instituto Venezolano de Investigaciones Cientificas
- Centro de Estudios Interdisciplinarios de la Fisica. Caracas
- Venezuela
- Venezuela
| | - Aileen Lozsán
- Instituto Venezolano de Investigaciones Cientificas
- Centro de Estudios Interdisciplinarios de la Fisica. Caracas
- Venezuela
- Venezuela
| |
Collapse
|
50
|
Affiliation(s)
- Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Qiyun Tang
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|