1
|
Hadidi N, Mohebbi M. Anti-Infective and Toxicity Properties of Carbon Based Materials: Graphene and Functionalized Carbon Nanotubes. Microorganisms 2022; 10:microorganisms10122439. [PMID: 36557692 PMCID: PMC9784703 DOI: 10.3390/microorganisms10122439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Recently, antimicrobial activities of various carbon-based nanomaterials against specific pathogens have become one of the most significant research interests in this field. Carbon nanotubes (CNTs) are promising multidisciplinary nanostructures in biomedicine, drug delivery, genetic engineering, biosensors, and artificial implants. However, the biomedical administration of CNTs is dependent on their solubility, toxicity, and biocompatibility, as well as novel drug-delivery applications through optimization of the drug's loading capacity, cellular absorption, and continuous release within the target cell. The usage of CNTs and Graphene materials as antimicrobial agents and nanocarriers for antibiotics delivery would possibly improve their bioavailability and facilitate better anti-infective therapy. However, it is worth mentioning that CNTs' antimicrobial activity and toxicity are highly dependent on their preparation and synthesis method. Various types of research have confirmed that diameter, length, residual catalyst, metal content, surface coating, electronic structure, and dispersibility would affect CNTs' toxicity toward bacteria and human cells. In this review article, a general study was performed on the antimicrobial properties of carbon-based nanomaterials, as well as their toxicity and applications in confronting different microorganisms. This study could be useful for researchers who are looking for new and effective drug delivery methods in the field of microbial resistance.
Collapse
|
2
|
Wei Z, Li K, Wang S, Wen L, Xu L, Wang Y, Chen Z, Li W, Qiu H, Li X, Chen J. Controllable AgNPs encapsulation to construct biocompatible and antibacterial titanium implant. Front Bioeng Biotechnol 2022; 10:1056419. [PMID: 36532588 PMCID: PMC9747934 DOI: 10.3389/fbioe.2022.1056419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 08/29/2023] Open
Abstract
Silver nanoparticles (AgNPs) are progressively becoming an in-demand material for both medical and life use due to their effective antimicrobial properties. The high surface area-to-volume ratio endows AgNPs with enhanced antibacterial capacity accompanied by inevitable cytotoxicity. Surface coating technique could precisely regulate the particle shape, aggregation, and Ag+ release pattern of AgNPs, by which the cytotoxicity could be significantly reduced. Various coating methods have been explored to shell AgNPs, but it remains a great challenge to precisely control the aggregation state of AgNPs and their shell thickness. Herein, we proposed a simple method to prepare a tunable polydopamine (pDA) coating shell on AgNPs just by tuning the reaction pH and temperature, yet we obtained high antibacterial property and excellent biocompatibility. SEM and TEM revealed that pDA coated AgNPs can form core-shell structures with different aggregation states and shell thickness. Both in vitro and in vivo antibacterial tests show that acid condition and heat-treatment lead to appropriate AgNPs cores and pDA shell structures, which endow Ti with sustained antibacterial properties and preferable cell compatibility. One month of implantation in an infected animal model demonstrated that the obtained surface could promote osteogenesis and inhibit inflammation due to its strong antibacterial properties. Therefore, this study provides a promising approach to fabricate biocompatible antibacterial surface.
Collapse
Affiliation(s)
- Zhangao Wei
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kexin Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linghan Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Yankai Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zirui Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Wei Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Facile Synthesis of chitosan-g-PVP/f-MWCNTs for application in Cu(II) ions removal and for bacterial growth inhibition in aqueous solutions. Sci Rep 2022; 12:17354. [PMID: 36253438 PMCID: PMC9576794 DOI: 10.1038/s41598-022-22332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
Herein in this study, chitosan-grafted-4-vinylpyridine (Cs-g-PVP) and two polymeric hybrids of Cs-g-PVP/f-MWCNTs (I and II) with 3wt% and 5wt% f-MWCNTs, respectively were prepared, characterized and used as adsorbent for the removal of Cu(II) ions from aqueous solutions in a batch process The obtained Cs-g-PVP was characterized using Fourier transform infrared spectroscopy (FT-IR) to identify its surface functional groups, in addition thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM) were performed to assess the thermal stability, the morphology and the elemental analysis of the obtained Cs-g-PVP and Cs-g-PVP/f-MWCNTs (I and II). Energy dispersive X-ray (EDX) with mapping analysis was obtained for Cs-g-PVP/Cu and Cs-g-PVP/f-MWCNTs/Cu samples that was confirming on the performance of adsorption batch process. The applicability of Langmuir adsorption isotherms was evaluated to better understand the adsorption process. Additionally, antibacterial activity of the Cs-g-PVP and the two polymeric hybrids Cs-g-PVP/f-MWCNTs (I and II) was evaluated against three Gram + ve bacteria (Staphylococcus aurous, Bacillus Subtitles and Streptococcus faecalis) and three Gram -ve bacteria (Escherichia coli, Pseudomonas aeruginosa and Neisseria gonorrhoeae. The results showed that the efficiency of Cs-g-PVP copolymer was improved after inclusion of the f-MWCNTs substrate towards adsorption of Cu(II) ions and antibacterial activity as well.
Collapse
|
4
|
Long-term, synergistic and high-efficient antibacterial polyacrylonitrile nanofibrous membrane prepared by "one-pot" electrospinning process. J Colloid Interface Sci 2021; 609:718-733. [PMID: 34863546 DOI: 10.1016/j.jcis.2021.11.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Enhancing long-term antibacterial activity of membrane materials is an effective strategy to reduce biological contamination. Herein, we developed a long-term, synergistic antibacterial polyacrylonitrile (PAN) nanofiber membrane by a "one-pot" electrospinning process. In the reaction solution of PAN and N, N-dimethylformamide (DMF), silver-silicon dioxide nanoparticles (Ag@SiO2 NPs) are in-situ synthesized and stabilized using silane coupling agent; and [2-(methacryloyloxy)-ethyl] trimethylammonium chloride (MT) monomers are then in-situ cross-linked to obtain a polyquaternary ammonium salt (PMT). Subsequently, the casting solution is directly used to fabricate Ag@SiO2/PMT-PAN nanofibrous membrane (NFM) via electrospinning. The antibacterial activity, reusability, synergy effect and biological safety of the Ag@SiO2/PMT-PAN NFM are systematically investigated, and the synergistic antibacterial mechanism is also explored. Even at very low (0.3 wt%) content of silver, the Ag@SiO2/PMT-PAN NFM exhibits excellent antibacterial activity against E. coli (99%) and S. aureus (99%). Also, the antibacterial ability of the NFM remains the same level after three cycles of antibacterial processes with the efficient synergy effects of Ag@SiO2 and PMT components. When the Ag@SiO2/PMT-PAN contacts with bacteria, the PMT attracts and kills the bacteria through electrostatic action. The bacteria with damaged cell membranes are deposited on the nanofibrous membrane, which could greatly promote the release of Ag+ and further enhance the antibacterial activity. Moreover, L929 fibroblasts are co-cultured with the extract of 4 mg/mL Ag@SiO2/PMT-PAN for 5 days, which exhibits a low cytotoxicity with a cell proliferation ratio of 95%. This work opens new pathways for developing long-term effective and synergistic antibacterial nanofibrous membrane materials to prevent infections associated with biomedical equipment.
Collapse
|
5
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Chen Y, Wu H, Yan C, Wu X, Wei J, Fang J, Zhong Z. Codeposition of Polyethyleneimine/Catechol on Fully Drawn Polyester Fiber‐Bundles for Investigating Interfacial Properties with Epoxy Resin. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Chen
- School of Textile Science and Engineering Tiangong University Tianjin 300387 China
| | - Hailiang Wu
- School of Textile Science and Engineering Tiangong University Tianjin 300387 China
- Tianjin Dongqi Wind Turbine Blade Engineering Co., Ltd. Tianjin 300450 China
| | - Chao Yan
- School of Textile Science and Engineering Tiangong University Tianjin 300387 China
- AVIC Aircraft Corporation Ltd. Xi'an 710089 China
| | - Xiaoqing Wu
- School of Textile Science and Engineering Tiangong University Tianjin 300387 China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin 300387 China
- School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
- School of Materials Science and Engineering Tiangong University Tianjin 300387 China
- Tianjin Engineering Center for Safety Evaluation of Water Quality and Safeguards Technology Tianjin 300387 China
| | - Jing Fang
- School of Textile Science and Engineering Tiangong University Tianjin 300387 China
| | - Zhili Zhong
- School of Textile Science and Engineering Tiangong University Tianjin 300387 China
| |
Collapse
|
7
|
Teixeira-Santos R, Gomes M, Gomes LC, Mergulhão FJ. Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: a systematic review. iScience 2021; 24:102001. [PMID: 33490909 PMCID: PMC7809508 DOI: 10.1016/j.isci.2020.102001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although high-performance carbon materials are widely used in surface engineering, with emphasis on carbon nanotubes (CNTs), the application of CNT nanocomposites on medical surfaces is poorly documented. In this study, we aimed to evaluate the antimicrobial and anti-adhesive properties of CNT-based surfaces. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria and 59 studies were selected for the qualitative analysis. Results from the analyzed studies suggest that surfaces containing modified CNTs, and specially CNTs conjugated with different polymers, exhibited strong antimicrobial and anti-adhesive activities. These composites seem to preserve the CNT toxicity to microorganisms and promote CNT-cell interactions, as well as to protect them from nonspecific protein adsorption. However, CNTs cannot yet compete with the conventional strategies to fight biofilms as their toxicity profile on the human body has not been thoroughly addressed. This review can be helpful for the development of new engineered medical surfaces.
Collapse
Affiliation(s)
- Rita Teixeira-Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marisa Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a widely used high-energy explosive for the application of energetic materials. However, the phase transformation from ε-CL-20 to γ-CL-20 restrains its further application in polymer bonded explosives (PBXs) and propellants. To inhibit the phase transition of CL-20, dopamine was first used in an efficient and facile method of in situ polymerization to passivate CL-20 crystals. The core-shell microcapsule particles were obtained, and the morphological characterization demonstrates the formation of a dense core-shell structure. The differential scanning calorimetry (DSC) and in situ X-ray diffraction (XRD) test results show that the compact and dense coating delays the ε-CL-20 crystal transformation temperature by about 30 °C, which enhances thermal stability. In addition, with the coating via polymers, the friction sensitivity of ε-CL-20 crystals decreases significantly. The findings indicate a successful application of dopamine chemistry in high-energy explosives, which provides an attractive method to modify the properties of CL-20 crystals.
Collapse
|
9
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
10
|
Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
The Advances in Biomedical Applications of Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Unique chemical, physical, and biological features of carbon nanotubes make them an ideal candidate for myriad applications in industry and biomedicine. Carbon nanotubes have excellent electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion, nano-size, and a high surface area, which can be tailored and functionalized on demand. This review discusses the progress and main fields of bio-medical applications of carbon nanotubes based on recently-published reports. It encompasses the synthesis of carbon nanotubes and their application for bio-sensing, cancer treatment, hyperthermia induction, antibacterial therapy, and tissue engineering. Other areas of carbon nanotube applications were out of the scope of this review. Special attention has been paid to the problem of the toxicity of carbon nanotubes.
Collapse
|
12
|
Lin C, Gong F, Yang Z, Zhao X, Li Y, Zeng C, Li J, Guo S. Core-Shell Structured HMX@Polydopamine Energetic Microspheres: Synergistically Enhanced Mechanical, Thermal, and Safety Performances. Polymers (Basel) 2019; 11:E568. [PMID: 30960552 PMCID: PMC6473810 DOI: 10.3390/polym11030568] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022] Open
Abstract
The solid⁻solid phase transition, poor mechanical properties, and high sensitivity has impeded further practical applications of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) based polymer bonded explosives (PBXs). To address these issues together, a facile and effective route was employed to achieve a coating of polydopamine (PDA) on the surface of explosive crystals via in situ polymerization of dopamine. Additionally, PBXs based on HMX@PDA microcapsules were prepared with a fluoropolymer as polymer binder. Improved storage modulus, static mechanical strength and toughness, and creep resistance has been achieved in as-prepared PDA modified PBXs. The β-δ phase transition temperature of as-obtained PBXs based on conventional HMX (C-HMX)@PDA was improved by 16.3 °C. The friction sensitivity of the C-HMX based PBXs showed a dramatic drop after the PDA coating. A favorable balance proposed in this paper among thermal stability, mechanical properties, and sensitivity was achieved for C-HMX based PBXs with the incorporation of PDA.
Collapse
Affiliation(s)
- Congmei Lin
- Institute of Chemical Material, China Academy of Engineering Physics, Mianyang 621900, China.
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Feiyan Gong
- Institute of Chemical Material, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Zhijian Yang
- Institute of Chemical Material, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Xu Zhao
- Institute of Chemical Material, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Yubin Li
- Institute of Chemical Material, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Chengcheng Zeng
- Institute of Chemical Material, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Jiang Li
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Lee J, Yoo J, Kim J, Jang Y, Shin K, Ha E, Ryu S, Kim BG, Wooh S, Char K. Development of Multimodal Antibacterial Surfaces Using Porous Amine-Reactive Films Incorporating Lubricant and Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6550-6560. [PMID: 30640431 DOI: 10.1021/acsami.8b20092] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anti-biofouling has been improved by passive or active ways. Passive antifouling strategies aim to prevent the initial adsorption of foulants, while active strategies aim to eliminate proliferative fouling by destruction of the chemical structure and inactivation of the cells. However, neither passive antifouling strategies nor active antifouling strategies can solely resist biofouling due to their inherent limitations. Herein, we successfully developed multimodal antibacterial surfaces for waterborne and airborne bacteria with the benefit of a combination of antiadhesion (passive) and bactericidal (active) properties of the surfaces. We elaborated multifunctionalizable porous amine-reactive (PAR) polymer films from poly(pentafluorophenyl acrylate) (PPFPA). Pentafluorophenyl ester groups in the PAR films facilitate creation of multiple functionalities through a simple postmodification under mild condition, based on their high reactivity toward various primary amines. We introduced amine-containing poly(dimethylsiloxane) (amine-PDMS) and dopamine into the PAR films, resulting in infusion of antifouling silicone oil lubricants and formation of bactericidal silver nanoparticles (AgNPs), respectively. As a result, the PAR film-based lubricant-infused AgNPs-incorporated surfaces demonstrate outstanding antibacterial effects toward both waterborne and airborne Escherichia coli, suggesting a new door for development of an effective multimodal anti-biofouling surface.
Collapse
Affiliation(s)
- Jieun Lee
- The National Creative Research Initiative Center for Intelligent Hybrids, School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jin Yoo
- The National Creative Research Initiative Center for Intelligent Hybrids, School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Joonwon Kim
- Institute of Molecular Biology and Genetics, School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Yeongseon Jang
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Kwangsoo Shin
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byung-Gee Kim
- Institute of Molecular Biology and Genetics, School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sanghyuk Wooh
- School of Chemical Engineering & Materials Science , Chung-Ang University , Seoul , 06974 , Republic of Korea
| | - Kookheon Char
- The National Creative Research Initiative Center for Intelligent Hybrids, School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
14
|
Menezes BRCD, Rodrigues KF, Fonseca BCDS, Ribas RG, Montanheiro TLDA, Thim GP. Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B 2019; 7:1343-1360. [PMID: 32255006 DOI: 10.1039/c8tb02419g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, thermal, electronic, and biological properties due to their particular atomic structure made of graphene sheets that are rolled into cylindrical tubes. Due to their outstanding properties, CNTs have been used in several technological fields. Currently, the most prominent research area of CNTs focuses on biomedical applications, using these materials to produce hybrid biosensors, drug delivery systems, and high performance composites for implants. Although a great number of research studies have already shown the advantages of CNT-based biomedical devices, their clinical use for in vivo application has not been consummated. Concerns related to their toxicity, biosafety, and biodegradation still remain. The effect of CNTs on the human body and the ecosystem is not well established, especially due to the lack of standardization of toxicological tests, which generate contradictions in the results. CNTs' toxicity must be clarified to enable the medical use of these exceptional materials in the near future. In this review, we summarize recent advances in developing biosensors, drug delivery systems, and implants using CNTs as smart biomaterials to identify pathogens, load/deliver drugs and enhance the mechanical and antimicrobial performance of implants.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Divisão de Ciências Fundamentais, Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228970, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
16
|
Wang Z, Huang X, Jin S, Wang H, Yuan L, Brash JL. Rapid antibacterial effect of sunlight-exposed silicon nanowire arrays modified with Au/Ag alloy nanoparticles. J Mater Chem B 2019; 7:6202-6209. [DOI: 10.1039/c9tb01472a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au/Ag alloy nanoparticles modified silicon nanowire arrays can kill bacterial cells in several minutes under sunlight due to their photothermal and photocatalytic activities.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiuzhen Huang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Sheng Jin
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Hongwei Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Lin Yuan
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - John L. Brash
- School of Biomedical Engineering
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
17
|
Liu R, Dai L, Si C, Zeng Z. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr Polym 2018; 195:63-70. [DOI: 10.1016/j.carbpol.2018.04.085] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022]
|
18
|
Yang Y, Ma L, Cheng C, Deng Y, Huang J, Fan X, Nie C, Zhao W, Zhao C. Nonchemotherapic and Robust Dual-Responsive Nanoagents with On-Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection. ADVANCED FUNCTIONAL MATERIALS 2018. [DOI: 10.1002/adfm.201705708] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug; Department of Ultrasound; West China School of Medicine/West China Hospital; Sichuan University; Chengdu 610041 China
| | - Chong Cheng
- Department of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Yiyi Deng
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug; Department of Ultrasound; West China School of Medicine/West China Hospital; Sichuan University; Chengdu 610041 China
| | - Xin Fan
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Weifeng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
19
|
Yoo J, Birke A, Kim J, Jang Y, Song SY, Ryu S, Kim BS, Kim BG, Barz M, Char K. Cooperative Catechol-Functionalized Polypept(o)ide Brushes and Ag Nanoparticles for Combination of Protein Resistance and Antimicrobial Activity on Metal Oxide Surfaces. Biomacromolecules 2018; 19:1602-1613. [DOI: 10.1021/acs.biomac.8b00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Alexander Birke
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz,, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - Yeongseon Jang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | | | | | | | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz,, Duesbergweg 10-14, 55128 Mainz, Germany
| | | |
Collapse
|
20
|
Ma L, Huang L, Zhang Y, Zhao L, Xin Q, Ye H, Li H. Hemocompatible poly(lactic acid) membranes prepared by immobilizing carboxylated graphene oxide via mussel-inspired method for hemodialysis. RSC Adv 2018. [DOI: 10.1039/c7ra11091j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carboxylated graphene oxide modified PLA membrane via mussel-inspired method exhibited excellent hemocompatibility and dialysis performance.
Collapse
Affiliation(s)
- Lankun Ma
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Textiles
| | - Lilan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Hong Li
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| |
Collapse
|
21
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
22
|
Hao XP, Chen SG, Wang WH, Yang ZQ, Yue LF, Sun HY, Cheng F. AgNP-coordinated glucosamine-grafted carbon nanotubes with enhanced antibacterial properties. NEW J CHEM 2017. [DOI: 10.1039/c7nj01199g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After glucosamine is coated on MWCNTs, the bonding force between the AgNPs and MWCNT–glucosamine increases because the charge of the O atom changes.
Collapse
Affiliation(s)
- X. P. Hao
- Institute of Materials Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - S. G. Chen
- Institute of Materials Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - W. H. Wang
- Institute of Materials Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Z. Q. Yang
- Institute of Materials Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - L. F. Yue
- Institute of Materials Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - H. Y. Sun
- Institute of Materials Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - F. Cheng
- Institute of Materials Science and Engineering
- Ocean University of China
- Qingdao
- China
- University of Calgary
| |
Collapse
|
23
|
Xie Y, Tang C, Wang Z, Xu Y, Zhao W, Sun S, Zhao C. Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. J Mater Chem B 2017; 5:7186-7193. [DOI: 10.1039/c7tb01516j] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bacterial attachment and the subsequent colonization on the surfaces of bio-materials usually result in biofilm formation, and thus lead to implant failure, inflammation and so on.
Collapse
Affiliation(s)
- Yi Xie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chengqiang Tang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zehao Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yuanting Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shudong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
24
|
Lin Y, Xiong K, Lu Z, Liu S, Zhang Z, Lu Y, Fu R, Wu D. Functional nanonetwork-structured polymers and carbons with silver nanoparticle yolks for antibacterial application. Chem Commun (Camb) 2017; 53:9777-9780. [DOI: 10.1039/c7cc04621a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nanonetwork-structured polymers and carbons with silver nanoparticle yolks were fabricated and demonstrated superior long-term antibacterial performances.
Collapse
Affiliation(s)
- Yanhuan Lin
- Materials Science Institute
- PCFM Lab and GDHPRC Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Kairong Xiong
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Zhitao Lu
- Materials Science Institute
- PCFM Lab and GDHPRC Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Shaohong Liu
- Materials Science Institute
- PCFM Lab and GDHPRC Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Zhaojie Zhang
- Materials Science Institute
- PCFM Lab and GDHPRC Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Yuheng Lu
- Materials Science Institute
- PCFM Lab and GDHPRC Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Ruowen Fu
- Materials Science Institute
- PCFM Lab and GDHPRC Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Dingcai Wu
- Materials Science Institute
- PCFM Lab and GDHPRC Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| |
Collapse
|