1
|
Galstyan A. Tracking Microenvironmental Response on Self-Assembled Phthalocyanine Systems - Adaptive and Non-Adaptive Antibacterial Photosensitization. Chemistry 2024; 30:e202401305. [PMID: 39034685 DOI: 10.1002/chem.202401305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Self-assembly has proven to be one of the effective methods for the formation of nanoscale therapeutics without the need to use nanodelivery systems. Such minimal models of supramolecular systems formed from amphiphilic photosensitizers (PS) have recently emerged as a new class of photoactive systems, providing unique and in some cases superior activities. Although the mechanism of photogenerated reactive oxygen species (ROS) in such systems is studied and to a certain extent understood, there are very limited studies investigating the influence of intricate environmental factors, including those occurring in the cellular environment, on the self-assembly and thus the activity of the system. Understanding the optimal conditions for the formation of active PS aggregates is an important area of research in the field of photodynamic therapy (PDT), as it is directly linked to the optimal treatment dose. In this study, we describe the synthesis, self-assembly properties, photophysical characterization, and photobiological efficacy of structurally closely related low-symmetry phthalocyanine derivatives. Studying the decay behavior of the PS fluorescence lifetime in the presence of molecular crowders and different bacterial strains, we found that certain derivatives exhibited adaptive behavior and change in activity, while others demonstrated non-adaptive characteristics.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Faculty of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), Centre for Water and Environmental Research (ZWU) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
2
|
Amphiphilic Protoporphyrin IX Derivatives as New Photosensitizing Agents for the Improvement of Photodynamic Therapy. Biomedicines 2022; 10:biomedicines10020423. [PMID: 35203632 PMCID: PMC8962274 DOI: 10.3390/biomedicines10020423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapeutic modality based on the interaction between a photosensitive molecule called photosensitizer (PS) and visible light irradiation in the presence of oxygen molecule. Protoporphyrin IX (PpIX), an efficient and widely used PS, is hampered in clinical PDT by its poor water-solubility and tendency to self-aggregate. These features are strongly related to the PS hydrophilic–lipophilic balance. In order to improve the chemical properties of PpIX, a series of amphiphilic PpIX derivatives endowed with PEG550 headgroups and hydrogenated or fluorinated tails was synthetized. Hydrophilic–lipophilic balance (HLB) and log p-values were computed for all of the prepared compounds. Their photochemical properties (spectroscopic characterization, photobleaching, and singlet oxygen quantum yield) were also evaluated followed by the in vitro studies of their cellular uptake, subcellular localization, and photocytotoxicity on three tumor cell lines (4T1, scc-U8, and WiDr cell lines). The results confirm the therapeutic potency of these new PpIX derivatives. Indeed, while all of the derivatives were perfectly water soluble, some of them exhibited an improved photodynamic effect compared to the parent PpIX.
Collapse
|
3
|
Obata M, Ishihara E, Hirohara S. Effect of tertiary amino groups in the hydrophobic segment of an amphiphilic block copolymer on zinc phthalocyanine encapsulation and photodynamic activity. RSC Adv 2022; 12:18144-18153. [PMID: 35800304 PMCID: PMC9210519 DOI: 10.1039/d2ra02224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polymer micelles are promising nanocarriers for hydrophobic photosensitizers of photodynamic therapy (PDT). Poly(styrene-co-(2-(N,N-dimethylamino)ethyl acrylate))-block-poly(polyethylene glycol monomethyl ether acrylate) (P(St-co-DMAEA)-b-PPEGA; 1) was prepared via reversible addition and fragmentation chain transfer (RAFT) polymerization as a carrier for a zinc phthalocyanine (ZnPc) photosensitizer to be used in PDT. The DMAEA-unit composition in the P(St-co-DMAEA) segment was adjusted to 0.40 molar ratio, which caused a sharp increase in water-solubility when the pH decreased from 7.4 to 5.0. The polymer 1 micelle size distribution also shifted to lower when the pH decreased, whereas this change was not observed in PSt-co-PPEGA (2), which was previously reported. The UV-vis spectrum of the ZnPc-loaded micelles of polymer 1 exhibited relatively sharp Q bands, comparable to those measured in DMSO, indicating good compatibility of the condensed core with ZnPc. ZnPc-loaded micelles of polymer 1 exerted excellent photocytotoxicity in the MNNG-induced mutant of the rat murine RGM-1 gastric epithelial cell line (RGK-1). In contrast, the ZnPc-loaded micelles of polymer 2 were completely inactive under the same conditions. Fluorescence from the RGK-1 cells treated with ZnPc-loaded micelles of polymer 1 was observed after 4 h of co-incubation, while no fluorescence was observed in cells treated with ZnPc-loaded micelles of polymer 2. These results indicate that the pH-responsive nature and good compatibility with ZnPc exhibited by the polymer 1 micelles are essential characteristics of ZnPc carriers for efficient photodynamic therapy. Tertiary amino groups in the hydrophobic core of polymer micelles affect the encapsulation and photodynamic activity of zinc phthalocyanine.![]()
Collapse
Affiliation(s)
- Makoto Obata
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Eika Ishihara
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube 755-8555, Japan
| |
Collapse
|
4
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 803] [Impact Index Per Article: 200.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
5
|
Sowa A, Höing A, Dobrindt U, Knauer SK, Galstyan A, Voskuhl J. Umbelliferone Decorated Water-soluble Zinc(II) Phthalocyanines - In Vitro Phototoxic Antimicrobial Anti-cancer Agents. Chemistry 2021; 27:14672-14680. [PMID: 34324228 PMCID: PMC8596868 DOI: 10.1002/chem.202102255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/10/2022]
Abstract
In this contribution we report on the synthesis, characterization and application of water-soluble zinc(II) phthalocyanines, which are decorated with four or eight umbelliferone moieties for photodynamic therapy (PDT). These compounds are linked peripherally to zinc(II) phthalocyanine by a triethylene glycol linker attached to pyridines, leading to cationic pyridinium units, able to increase the water solubility of the system. Beside their photophysical properties they were analyzed concerning their cellular distribution in human hepatocyte carcinoma (HepG2) cells as well as their phototoxicity towards HepG2 cells, Gram-positive (S. aureus strain 3150/12 and B. subtilis strain DB104) and Gram-negative bacteria (E. coli strain UTI89 and E. coli strain Nissle 1917). At low light doses and concentrations, they exhibit superb antimicrobial activity against Gram-positive bacteria as well as anti-tumor activity against HepG2. They are even capable to inactivate Gram-negative bacteria, whereas the dark toxicity remains low. These unique water-soluble compounds can be regarded as all-in-one type photosensitizers with broad applications ranges in the future.
Collapse
Affiliation(s)
- Andrea Sowa
- Institute of Chemistry (Organic chemistry)University of Duisburg-EssenUniversitätsstraße 745117EssenGermany
| | - Alexander Höing
- Department of Molecular Biology II Center for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 545117EssenGermany
| | - Ulrich Dobrindt
- Institute of HygieneWestfälische Wilhelms-Universität MünsterMendelstraße 748149MünsterGermany
| | - Shirley K. Knauer
- Department of Molecular Biology II Center for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 545117EssenGermany
| | - Anzhela Galstyan
- Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterBusso-Peus-Straße 1048149MünsterGermany
| | - Jens Voskuhl
- Institute of Chemistry (Organic chemistry)University of Duisburg-EssenUniversitätsstraße 745117EssenGermany
| |
Collapse
|
6
|
Strokov K, Galstyan A. Chitosan‐Silicon Phthalocyanine Conjugate as Effective Photo‐Functional Hydrogel for Tracking and Killing of Bacteria. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Konstantin Strokov
- Center for Soft Nanoscience Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Straße 10 48149 Münster Germany
| | - Anzhela Galstyan
- Center for Soft Nanoscience Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Straße 10 48149 Münster Germany
| |
Collapse
|
7
|
Hu X, Lu Y, Dong C, Zhao W, Wu X, Zhou L, Chen L, Yao T, Shi S. A Ru
II
Polypyridyl Alkyne Complex Based Metal–Organic Frameworks for Combined Photodynamic/Photothermal/Chemotherapy. Chemistry 2020; 26:1668-1675. [DOI: 10.1002/chem.201904704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaochun Hu
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Yonglin Lu
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Wenrong Zhao
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Xuewen Wu
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
| | - Lulu Zhou
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
| | - Lv Chen
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Tianming Yao
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
| | - Shuo Shi
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| |
Collapse
|
8
|
A combined experimental and theoretical analysis of the solid-state supramolecular self-assembly of N-(2,4-dichlorophenyl)-1-naphthamide: Synthesis, anticholinesterase potential and molecular docking analysis. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Galstyan A, Ricker A, Nüsse H, Klingauf J, Dobrindt U. Exploring the Impact of Coordination-Driven Self Assembly on the Antibacterial Activity of Low-Symmetry Phthalocyanines. ACS APPLIED BIO MATERIALS 2019; 3:400-411. [DOI: 10.1021/acsabm.9b00873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus Strasse 10, 48149 Münster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany
| | - Ulrich Dobrindt
- Institut of Hygiene, Westfälische Wilhelms-Universität Münster, Mendelstrasse 7, 48149 Münster, Germany
| |
Collapse
|
10
|
Hu X, Xu Z, Hu J, Dong C, Lu Y, Wu X, Wumaier M, Yao T, Shi S. A redox-activated theranostic nanoplatform: toward glutathione-response imaging guided enhanced-photodynamic therapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00894b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A redox-sensitive nanoagent (DCMn-RA) for dual-mode GSH detection, NIR-II imaging and enhanced PDT is described.
Collapse
Affiliation(s)
- Xiaochun Hu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Zhenli Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Jiwen Hu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P.R. China
| | - Chunyan Dong
- Breast Cancer Center
- Shanghai East Hospital
- Tongji University
- 200120 Shanghai
- P.R. China
| | - Yonglin Lu
- Breast Cancer Center
- Shanghai East Hospital
- Tongji University
- 200120 Shanghai
- P.R. China
| | - Xuewen Wu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Maierhaba Wumaier
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Tianming Yao
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Shuo Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| |
Collapse
|
11
|
Galstyan A, Dobrindt U. Breaching the wall: morphological control of efficacy of phthalocyanine-based photoantimicrobials. J Mater Chem B 2018; 6:4630-4637. [DOI: 10.1039/c8tb01357h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this paper, photophysical, theoretical and biological studies are combined, highlighting the importance of different characteristics for designing new and more effective PSs.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Ulrich Dobrindt
- Institute of Hygiene
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| |
Collapse
|
12
|
Galstyan A, Putze J, Dobrindt U. Gaining Access to Bacteria through (Reversible) Control of Lipophilicity. Chemistry 2017; 24:1178-1186. [DOI: 10.1002/chem.201704562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Anzhela Galstyan
- Center for Nanotechnology; Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 48149 Münster Germany
| | - Johannes Putze
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| | - Ulrich Dobrindt
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| |
Collapse
|
13
|
Wu W, Zhang Q, Wang X, Han C, Shao X, Wang Y, Liu J, Li Z, Lu X, Wu M. Enhancing Selective Photooxidation through Co–Nx-doped Carbon Materials as Singlet Oxygen Photosensitizers. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01671] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenting Wu
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Qinggang Zhang
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Xiaokai Wang
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Congcong Han
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Xiaodong Shao
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Yixian Wang
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Jialiang Liu
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Zhongtao Li
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Xiaoqing Lu
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| | - Mingbo Wu
- State
Key Laboratory of Heavy Oil Processing, School of Chemical
Engineering, and ‡College of Science, China University of Petroleum, Qingdao, Shandong 266580, People’s Republic of China
| |
Collapse
|
14
|
Osifeko OL, Nyokong T. Effects of symmetry and the number of positive charges on the photocatalytic activity of indium phthalocyanines when embedded in electrospun fibers. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Bankole OM, Achadu OJ, Nyokong T. Nonlinear Interactions of Zinc Phthalocyanine-Graphene Quantum Dots Nanocomposites: Investigation of Effects of Surface Functionalization with Heteroatoms. J Fluoresc 2017; 27:755-766. [DOI: 10.1007/s10895-016-2008-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
|
16
|
Zhan QC, Shi XQ, Yan XH, Liu Q, Zhou JH, Zhou L, Wei SH. Breaking the reduced glutathione-activated antioxidant defence for enhanced photodynamic therapy. J Mater Chem B 2017; 5:6752-6761. [DOI: 10.1039/c7tb01233k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species (ROSs) to kill cancer cells.
Collapse
Affiliation(s)
- Qi-chen Zhan
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
- Nanjing Normal University Nanjing (210023)
| | - Xian-qing Shi
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
- Nanjing Normal University Nanjing (210023)
| | - Xiao-hong Yan
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
- Nanjing Normal University Nanjing (210023)
| | - Qian Liu
- Department of Neurology
- Jinling Hospital
- Medical School of Nanjing University 305 East Zhongshan Road
- Nanjing
- P. R. China
| | - Jia-hong Zhou
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
- Nanjing Normal University Nanjing (210023)
| | - Lin Zhou
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
- Nanjing Normal University Nanjing (210023)
| | - Shao-hua Wei
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
- Nanjing Normal University Nanjing (210023)
| |
Collapse
|