1
|
Caverzan MD, Ibarra LE. Advancing glioblastoma treatment through iron metabolism: A focus on TfR1 and Ferroptosis innovations. Int J Biol Macromol 2024; 278:134777. [PMID: 39153669 DOI: 10.1016/j.ijbiomac.2024.134777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.
Collapse
Affiliation(s)
- Matías D Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina; Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina.
| |
Collapse
|
2
|
Liu HJ, Xu P. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Adv Drug Deliv Rev 2022; 191:114619. [PMID: 36372301 PMCID: PMC9724744 DOI: 10.1016/j.addr.2022.114619] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Despite its prevalence in the management of peripheral tumors, compared to surgery and radiation therapy, chemotherapy is still a suboptimal intervention in fighting against brain cancer and cancer brain metastases. This discrepancy is mainly derived from the complicatedly physiological characteristic of intracranial tumors, including the presence of blood-brain barrier (BBB) and limited enhanced permeability and retention (EPR) effect attributed to blood-brain tumor barrier (BBTB), which largely lead to insufficient therapeutics penetrating to tumor lesions to produce pharmacological effects. Therefore, dependable methodologies that can boost the efficacy of chemotherapy for brain tumors are urgently needed. Recently, nanomedicines have shown great therapeutic potential in brain tumors by employing various transcellular strategies, paracellular strategies, and their hybrids, such as adsorptive-mediated transcytosis, receptor-mediated transcytosis, BBB disruption technology, and so on. It is compulsory to comprehensively summarize these practices to shed light on future directions in developing therapeutic regimens for brain tumors. In this review, the biological and pathological characteristics of brain tumors, including BBB and BBTB, are illustrated. After that, the emerging delivery strategies for brain tumor management are summarized into different classifications and supported with detailed examples. Finally, the potential challenges and prospects for developing and clinical application of brain tumor-oriented nanomedicine are discussed.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA.
| |
Collapse
|
3
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
4
|
Endosomal pH-Responsive Fe-Based Hyaluronate Nanoparticles for Doxorubicin Delivery. Molecules 2021; 26:molecules26123547. [PMID: 34200716 PMCID: PMC8229704 DOI: 10.3390/molecules26123547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, we report pH-responsive metal-based biopolymer nanoparticles (NPs) for tumor-specific chemotherapy. Here, aminated hyaluronic acid (aHA) coupled with 2,3-dimethylmaleic anhydride (DMA, as a pH-responsive moiety) (aHA-DMA) was electrostatically complexed with ferrous chloride tetrahydrate (FeCl2/4H2O, as a chelating metal) and doxorubicin (DOX, as an antitumor drug model), producing DOX-loaded Fe-based hyaluronate nanoparticles (DOX@aHA-DMA/Fe NPs). Importantly, the DOX@aHA-DMA/Fe NPs improved tumor cellular uptake due to HA-mediated endocytosis for tumor cells overexpressing CD44 receptors. As a result, the average fluorescent DOX intensity observed in MDA-MB-231 cells (with CD44 receptors) was ~7.9 × 102 (DOX@HA/Fe NPs, without DMA), ~8.1 × 102 (DOX@aHA-DMA0.36/Fe NPs), and ~9.3 × 102 (DOX@aHA-DMA0.60/Fe NPs). Furthermore, the DOX@aHA-DMA/Fe NPs were destabilized due to ionic repulsion between Fe2+ and DMA-detached aHA (i.e., positively charged free aHA) in the acidic environment of tumor cells. This event accelerated the release of DOX from the destabilized NPs. Our results suggest that these NPs can be promising tumor-targeting drug carriers responding to acidic endosomal pH.
Collapse
|
5
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Yoon S, Kim Y, Youn YS, Oh KT, Kim D, Lee ES. Transferrin-Conjugated pH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery. Pharmaceutics 2020; 12:pharmaceutics12111109. [PMID: 33218116 PMCID: PMC7698888 DOI: 10.3390/pharmaceutics12111109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we developed γ-cyclodextrin-based multifunctional nanoparticles (NPs) for tumor-targeted therapy. The NPs were self-assembled using a γ-cyclodextrin (γCD) coupled with phenylacetic acid (PA), 2,3-dimethylmaleic anhydride (DMA), poly(ethylene glycol) (PEG), and transferrin (Tf), termed γCDP-(DMA/PEG-Tf) NPs. These γCDP-(DMA/PEG-Tf) NPs are effective in entrapping topotecan (TPT, as a model antitumor drug) resulting from the ionic interaction between pH-responsive DMA and TPT or the host–guest interaction between γCDP and TPT. More importantly, the γCDP-(DMA/PEG-Tf) NPs can induce ionic repulsion at an endosomal pH (~6.0) resulting from the chemical detachment of DMA from γCDP, which is followed by extensive TPT release. We demonstrated that γCDP-(DMA/PEG-Tf) NPs led to a significant increase in cellular uptake and MDA-MB-231 tumor cell death. In vivo animal studies using an MDA-MB-231 tumor xenografted mice model supported the finding that γCDP-(DMA/PEG-Tf) NPs are effective carriers of TPT to Tf receptor-positive MDA-MB-231 tumor cells, promoting drug uptake into the tumors through the Tf ligand-mediated endocytic pathway and increasing their toxicity due to DMA-mediated cytosolic TPT delivery.
Collapse
Affiliation(s)
- Seonyoung Yoon
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (S.Y.); (Y.K.)
| | - Yoonyoung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (S.Y.); (Y.K.)
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea;
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N Stonewall Ave, Oklahoma City, OK 73117, USA;
| | - Eun Seong Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea
- Correspondence: ; Tel.: +82-2-2164-4921
| |
Collapse
|
7
|
Tumor-Homing pH-Sensitive Extracellular Vesicles for Targeting Heterogeneous Tumors. Pharmaceutics 2020; 12:pharmaceutics12040372. [PMID: 32316679 PMCID: PMC7238000 DOI: 10.3390/pharmaceutics12040372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/12/2023] Open
Abstract
In this study, we fabricated tumor-homing pH-sensitive extracellular vesicles for efficient tumor treatment. These vesicles were prepared using extracellular vesicles (EVs; BTEVs extracted from BT-474 tumor cells or SKEVs extracted from SK-N-MC tumor cells), hyaluronic acid grafted with 3-(diethylamino)propylamine (HDEA), and doxorubicin (DOX, as a model antitumor drug). Consequently, HDEA/DOX anchored EVs (HDEA@EVs) can interact with origin tumor cells owing to EVs’ homing ability to origin cells. Therefore, EV blends of HDEA@BTEVs and HDEA@SKEVs demonstrate highly increased cellular uptake in both BT-474 and SK-N-MC cells: HDEA@BTEVs for BT-474 tumor cells and HDEA@SKEVs for SK-N-MC tumor cells. Furthermore, the hydrophobic HDEA present in HDEA@EVs at pH 7.4 can switch to hydrophilic HDEA at pH 6.5 as a result of acidic pH-induced protonation of 3-(diethylamino)propylamine (DEAP) moieties, resulting in an acidic pH-activated EVs’ disruption, accelerated release of encapsulated DOX molecules, and highly increased cell cytotoxicity. However, EV blends containing pH-insensitive HA grafted with deoxycholic acid (HDOC) (HDOC@BTEVs and HDOC@SKEVs) showed less cell cytotoxicity for both BT-474 and SK-N-MC tumor cells, because they did not act on EVs’ disruption and the resulting DOX release. Consequently, the use of these tumor-homing pH-sensitive EV blends may result in effective targeted therapies for various tumor cells.
Collapse
|
8
|
Wang H, Jia Q, Liu W, Nan F, Zheng X, Ding Y, Ren H, Wu J, Ge J. Hypocrellin Derivative‐Loaded Calcium Phosphate Nanorods as NIR Light‐Triggered Phototheranostic Agents with Enhanced Tumor Accumulation for Cancer Therapy. ChemMedChem 2019; 15:177-181. [DOI: 10.1002/cmdc.201900512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/14/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Hongyi Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- Xi'an Institute of Flexible Electronics (IFE)&Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Fuchun Nan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Ding
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Noh GJ, Park H, Lee ES. Augmented tumor accumulation and photothermal ablation using gold nanoparticles with a particular cellular entry orientation. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518809112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gold nanoparticles with various functionalities have served as potential tools in nanotechnology for tumor ablation. In this work, we seek to design and develop gold nanoparticle with poly(ethylene glycol)-containing dopamine (hereafter termed as AuND), and to synthesize the AuND with one-sided Tat peptide expression (OT@AuND). We demonstrate the tumor cell-targeting ability on the basis of anti-nonspecific cell binding of OT@AuND and determine how the chemically modified gold nanoparticle–based product affects photothermal tumor therapy in vitro and in vivo. The OT@AuND with a particular cellular entry orientation–induced delayed endocytosis, which is advantageous for enhanced permeability and retention effect-based tumor accumulation. This is because the slower cellular interaction of OT@AuND allows it to have the time to be transported to and bind to the tumor site. In tumor cell lines, OT@AuND showed a lower cellular uptake than gold nanoparticles with full-sided Tat peptide expression (FT@AuND) in the early period (after its in vitro and in vivo administration), but the cellular internalization rate of OT@AuND caught up with that of FT@AuND in the late period. Importantly, the delayed cellular internalization feature of OT@AuND resulted in efficient tumor accumulation in tumor-bearing mice, because the time interval provided OT@AuND more chances not to bind to any cells, but to enter tumor cells, leading to selective photothermal tumor ablation. These data suggest that gold nanoparticles with a particular cellular entry orientation can be further explored as a potential photothermal therapeutic agent and as a strategy to treat tumors.
Collapse
Affiliation(s)
- Gwang Jin Noh
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Hongsuk Park
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| |
Collapse
|
10
|
Liu Y, Liu J, Zhang J, Li X, Lin F, Zhou N, Yang B, Lu L. Noninvasive Brain Tumor Imaging Using Red Emissive Carbonized Polymer Dots across the Blood-Brain Barrier. ACS OMEGA 2018; 3:7888-7896. [PMID: 30087926 PMCID: PMC6072250 DOI: 10.1021/acsomega.8b01169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 05/23/2023]
Abstract
Surgical resection is recognized as a mainstay in the therapy of malignant brain tumors. In clinical practice, however, surgeons face great challenges in identifying the tumor boundaries due to the infiltrating and heterogeneous nature of neoplastic tissues. Contrast-enhanced magnetic resonance imaging (MRI) is extensively used for defining the brain tumor in clinic. Disappointingly, the commercially available (MR) contrast agents show the transient circulation lifetime and poor blood-brain barrier (BBB) permeability, which seriously hamper their abilities in tumor visualization. In this work, red fluorescent carbonized polymer dots (CPDs) were systematically investigated with respect to their BBB-penetration ability. In summary, CPDs possess long excitation/emission wavelengths, low toxicity, high photostability, and excellent biocompatibility. CPDs exhibit high internalization in glioma cells in time- and dose-dependent procedures, and internalized CPDs locate mainly in endolysosomal structures. In vitro and in vivo studies confirmed the BBB permeability of CPDs, contributing to the early stage diagnosis of brain disorders and the noninvasive visualization of the brain tumor without compromised BBB. Furthermore, owing to the high tumor to normal tissue ratio of CPDs under ex vivo conditions, our nanoprobe holds the promise to guide brain-tumor resection by real-time fluorescence imaging during surgery.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Junjun Liu
- State Key
Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiayi Zhang
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiucun Li
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Fangsiyu Lin
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Nan Zhou
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Bai Yang
- State Key
Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Laijin Lu
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
11
|
Koo M, Oh KT, Noh G, Lee ES. Gold Nanoparticles Bearing a Tumor pH-Sensitive Cyclodextrin Cap. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24450-24458. [PMID: 29963860 DOI: 10.1021/acsami.8b08595] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report functional gold nanoparticles (AuNPs) with a pH-sensitive γ-cyclodextrin (CD) cap. These particles include two chargeable CD molecules on their surface. CD with dopamine and amine (NH2) groups (hereafter termed as dCD-NH2) was anchored to the gold surface and then electrostatically complexed with the CD with 2,3-dimethylmaleic acid (DMA) and chlorin e6 (Ce6) (hereafter termed as cCD-DMA), producing an ionic complex consisting of dCD-NH2 and cCD-DMA. Under the acidic environment (pH 6.8) existing in most solid tumors, the ionic complex was destabilized because of the decoupling of DMA, resulting in the release of cCD (without DMA) from the AuNPs, resulting in extensive tumoral uptake of AuNPs with dCD-NH2 (because of their electrostatic attraction to tumor cells). This event resulted in a significant increase in the efficiency of cellular AuNP uptake and light-driven (AuNP-mediated photothermal and Ce6-mediated photodynamic) ablation of acidic solid tumors, suggesting marked potential for tumor therapy.
Collapse
Affiliation(s)
- Mijin Koo
- Department of Biotechnology , The Catholic University of Korea , 43 Jibong-ro , Bucheon-si , Gyeonggi-do 14662 , Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Gwangjin Noh
- Department of Biotechnology , The Catholic University of Korea , 43 Jibong-ro , Bucheon-si , Gyeonggi-do 14662 , Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology , The Catholic University of Korea , 43 Jibong-ro , Bucheon-si , Gyeonggi-do 14662 , Republic of Korea
| |
Collapse
|
12
|
Nair LV, Nair RV, Shenoy SJ, Thekkuveettil A, Jayasree RS. Blood brain barrier permeable gold nanocluster for targeted brain imaging and therapy: an in vitro and in vivo study. J Mater Chem B 2017; 5:8314-8321. [PMID: 32264500 DOI: 10.1039/c7tb02247f] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Blood brain barrier (BBB) is a dynamic interface, comprising polarized endothelial cells, that separates the brain from the circulatory system. The highly protective nature of this tight junction impairs diagnosis and treatment of brain disorders. In this study, we designed a sub atomic size, near infrared emitting, dual function glutathione gold cluster with high fluorescence yield to facilitate permeability of BBB, for imaging applications and drug delivery. The gold cluster was then modified with Levodopa (l-dopa), to utilize the large amino acid transporter 1 (LAT1) pathways to enhance brain entry. Uptake and permeability of the nanoprobes were demonstrated using an established model of BBB, comprising brain endothelial cells (bEnd.3). The uptake and the clearance of l-dopa modified cluster was faster than the glutathione cluster. l-Dopa modified cluster supports the slow and sustained delivery of a model drug, pilocarpine, to the brain. Results of in vivo imaging and drug release in normal mice hold promise for considering the probe for early diagnosis of brain diseases, when the barrier is not disrupted, and for subsequent drug treatment.
Collapse
Affiliation(s)
- L V Nair
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum-695012, India.
| | | | | | | | | |
Collapse
|
13
|
Ma D, Chen J, Luo Y, Wang H, Shi X. Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T 1-weighted magnetic resonance imaging applications. J Mater Chem B 2017; 5:7267-7273. [PMID: 32264176 DOI: 10.1039/c7tb01588g] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a convenient strategy to prepare ultrasmall Fe3O4 nanoparticles (NPs) coated with zwitterion l-cysteine (Cys) for enhanced T1-weighted magnetic resonance (MR) imaging applications. The formed Fe3O4-PEG-Cys NPs possess antifouling properties, good r1 relaxivity, excellent cytocompatibility and hemocompatibility, and can be used as a contrast agent for enhanced blood pool and tumor MR imaging.
Collapse
Affiliation(s)
- Dan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | |
Collapse
|
14
|
Extremely small-sized globular poly(ethylene glycol)-cyclic RGD conjugates targeting integrin α v β 3 in tumor cells. Int J Pharm 2017; 528:1-7. [DOI: 10.1016/j.ijpharm.2017.05.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/08/2017] [Accepted: 05/28/2017] [Indexed: 11/18/2022]
|