1
|
Chang R, Wang C, Kong X, Li W, Wu J. Retracted article: The role of second generation sequencing technology and nanomedicine in the monitoring and treatment of lower extremity deep vein thrombosis susceptibility genes. Bioengineered 2024; 15:2003926. [PMID: 34787073 PMCID: PMC10826625 DOI: 10.1080/21655979.2021.2003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
Rong Chang, Chunsheng Wang, Xiangqi Kong, Wenhui Li and Jinchun Wu. The role of second generation sequencing technology and nanomedicine in the monitoring and treatment of lower extremity deep vein thrombosis susceptibility genes. Bioengineered. 2021 Nov. doi: 10.1080/21655979.2021.2003926.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines.The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
- Department of Cardiovascular Medicine, Longhua Hospital Affiliated to Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Chunsheng Wang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
- Department of Cardiovascular Medicine, Longhua Hospital Affiliated to Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Xiangqi Kong
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
- Department of Cardiovascular Medicine, Longhua Hospital Affiliated to Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Wenhui Li
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
- Department of Cardiovascular Medicine, Longhua Hospital Affiliated to Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Jinchun Wu
- Department of Cardiovascular Medicine, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| |
Collapse
|
2
|
Ganesh D, Jain P, Shanthamurthy CD, Toraskar S, Kikkeri R. Targeting Selectins Mediated Biological Activities With Multivalent Probes. Front Chem 2021; 9:773027. [PMID: 34926401 PMCID: PMC8677667 DOI: 10.3389/fchem.2021.773027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Selectins are type-I transmembrane glycoproteins that are ubiquitously expressed on activated platelets, endothelial cells, and leukocytes. They bind to cell surface glycoproteins and extracellular matrix ligands, regulate the rolling of leukocytes in the blood capillaries, and recruit them to inflammatory sites. Hence, they are potential markers for the early detection and inhibition of inflammatory diseases, thrombosis, cardiovascular disorders, and tumor metastasis. Fucosylated and sialylated glycans, such as sialyl Lewisx, its isoform sialyl Lewisa, and heparan sulfate, are primary selectin ligands. Functionalization of these selectin-binding ligands on multivalent probes, such as nanoparticles, liposomes, and polymers, not only inhibits selectin-mediated biological activity but is also involved in direct imaging of the inflammation site. This review briefly summarizes the selectin-mediated various diseases such as thrombosis, cancer and recent progress in the different types of multivalent probes used to target selectins.
Collapse
Affiliation(s)
- Deepak Ganesh
- Indian Institute of Science Education and Research, Pune, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Pune, India
| | | | - Suraj Toraskar
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
3
|
Feng Q, Wang M, Muhtar E, Wang Y, Zhu H. Nanoparticles of a New Small-Molecule P-Selectin Inhibitor Attenuate Thrombosis, Inflammation, and Tumor Growth in Two Animal Models. Int J Nanomedicine 2021; 16:5777-5795. [PMID: 34471352 PMCID: PMC8403725 DOI: 10.2147/ijn.s316863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/18/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose To assess whether the newly designed small-molecule oral P-selectin inhibitor 3S-1,2,3,4-tetrahydro-β-carboline-3-methyl aspartyl ester (THCMA) as a nanomedicine enhances antithrombosis, anti-inflammation, and antitumor activity more than the clinical trial drug PSI-697. Methods THCMA was designed as an amphiphile containing pharmacophores of PSI-697. Its nanofeatures were explored with TEM, SEM, Tyndall effect, ζ-potential, FT-ICR-MS, and NOESY 2D 1H NMR. The P-selectin inhibitory effect of THCMA was demonstrated with molecular docking, ultraviolet (UV) spectra, and competitive ELISA. In vivo and in vitro assays — anti-arterial thrombosis, anti–venous thrombosis, anti-inflammation, antitumor growth, anti–platelet aggregation, rat-tail bleeding time, anticoagulation index, soluble P-selectin (sP-selectin) expression, and serum TNFα expression — were performed to explore bioactivity and potential mechanisms. Water solubility of THCMA was measured using UV-absorption spectra. Results THCMA self-assembled into nanorings of approximately 100 nm in diameter. Its water solubility was about 1,030-fold that of PSI-697. THCMA exhibited more potent P-selectin inhibitory effect than PSI-697. The oral efficacy of THCMA was 100-fold that of PSI-697 in inhibiting arterial and venous thrombosis and tenfold in inhibiting inflammation. THCMA inhibited thrombosis at a dose that produces no coagulation disorders and no bleeding risk. THCMA exhibited enhanced antitumor activity over PSI-697 without systemic chemotherapy toxicity. THCMA significantly inhibited platelet aggregation in vitro and downregulated the expression levels of serum sP-selectin and TNFα in vivo. Conclusion A new small-molecule P-selectin inhibitor, THCMA, has been successfully designed as a nanomedicine with largely enhanced oral efficacy compared to the clinical trial drug PSI-697, and thus might be developed for the oral treatment of arterial thrombosis, venous thrombosis, inflammation, and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Qiqi Feng
- School of Pharmaceutical Sciences, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mengyang Wang
- School of Pharmaceutical Sciences, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Eldar Muhtar
- School of Pharmaceutical Sciences, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yaonan Wang
- School of Pharmaceutical Sciences, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Haimei Zhu
- School of Pharmaceutical Sciences, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
4
|
Emerging nanotherapeutics for antithrombotic treatment. Biomaterials 2020; 255:120200. [PMID: 32563945 DOI: 10.1016/j.biomaterials.2020.120200] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Thrombus causes insufficient blood flow and ischemia damages to brain and heart, leading to life-threatening cardio-cerebrovascular diseases. Development of efficient antithrombotic strategies has long been a high priority, owing to the high morbidity and mortality of thrombotic diseases. With the rapid development of biomedical nanotechnology in diagnosis and treatment of thrombotic disorder, remarkable progresses have been made in antithrombotic nanomedicines in recent years. Herein, we outline the recent advances in this field at the intersection of thrombus theranostics and biomedical nanotechnology. First, thrombus diagnosis techniques based on biomedical nanotechnology are presented. Then, emerging antithrombotic nanotherapeutics are overviewed, including thrombus-targeting strategies, thrombus stimuli-responsive nanosystems and phase transition-driven nanotherapeutics. Furthermore, multifunctional nanosystems for combination theranostics of thrombotic diseases are discussed. Finally, the design considerations, advantages and challenges of these biomedical nanotechnology-driven therapeutics in clinical translation are highlighted.
Collapse
|
5
|
Heptapeptide-based modification leading to enhancing the action of MTCA on activated platelets, P-selectin, GPIIb/IIIa. Future Med Chem 2018; 10:1957-1970. [PMID: 29973078 DOI: 10.4155/fmc-2018-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM The modification of platelet inhibitor to enhance its targeting capacity toward platelets is of clinical importance. Thus, (1R, 3S)-1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (MTCA), a platelet inhibitor, was modified with Lys(Pro-Ala-Lys)-Arg-Gly-Asp-Val (KKV), platelet targeting peptide, to form MTCA-KKV. MATERIALS & METHODS MTCA and MTCA-KKV were synthesized to identify the effect of KKV modification on MTCA and platelets. RESULTS Atomic force microscopy imaged MTCA-KKV effectively accumulated on activated platelets. UV spectra showed that MTCA-KKV concentration dependently changed P-selectin and GPIIb/IIIa conformations. For platelet aggregation, the IC50 of MTCA-KKV was approximately 1/10 folds of MTCA. CONCLUSION KKV modification led to forming MTCA-KKV that is superior to MTCA in terms of accumulating on activated platelets, targeting P-selectin and GPIIb/IIIa and inhibiting platelet aggregation. MTCA-KKV could be a promising lead for further investigation.
Collapse
|
6
|
Zhu H, Wang Y, Song C, Feng Q, Wu J, Zhao S, Gui L, Zhang X, Zhao M, Peng S. Docking of THPDTPI: to explore P-selectin as a common target of anti-tumor, anti-thrombotic and anti-inflammatory agent. Oncotarget 2018; 9:268-281. [PMID: 29416612 PMCID: PMC5787463 DOI: 10.18632/oncotarget.19374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023] Open
Abstract
The impact of soluble P-selectin on tumor growth, thrombosis and inflammation has been individually documented. Whether the down-regulation of P-selectin expression can simultaneously slow the tumor growth, inhibit the thrombosis and attenuate the inflammatory response remains unknown. In this context, (2'S,5'S)- tetrahydropyrazino[1',2':1,6]-di{2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole}-1',4'-dione (THPDTPI) was designed as an inhibitor of P-selectin. The suitable docking of THPDTPI towards the active site of P-selectin, the significant down-regulation of THPDTPI to P-selectin expression, and the direct action of THPDTPI on P-selectin suggest that P-selectin could be a target of THPDTPI. In vivo THPDTPI possesses the anti-tumor activity, the anti-thrombotic activity and the anti-inflammatory activity. This implies that targeting P-selectin is of essential importance for this triple activity. The minimal effective doses of THPDTPI inhibiting the tumor growth, the rat arterial thrombosis and the mouse ear edema are 0.01 μmol/kg, 0.1 μmol/kg and 0.001 μmol/kg, respectively. Atomic force microscopy images and FT-MS spectra showed that the adhesion of THPDTPI onto the surfaces of the platelets may be the first step of P-selectin targeting. Besides, the dependence of the triple action of THPDTPI inhibiting the tumor growth, the thrombosis and the inflammation on the decrease of the soluble P-selectin led to the correlation of the soluble P-selectin with the serum TNF-α and serum IL-8.
Collapse
Affiliation(s)
- Haimei Zhu
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Yuji Wang
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Ce Song
- Guangxi Pusen Biotechnology Co. Ltd., Guilin, China
| | - Qiqi Feng
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Jianhui Wu
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Shurui Zhao
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Lin Gui
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiaoyi Zhang
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Ming Zhao
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shiqi Peng
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
7
|
Xu J, Zhou J, Zhong Y, Zhang Y, Liu J, Chen Y, Deng L, Sheng D, Wang Z, Ran H, Guo D. Phase Transition Nanoparticles as Multimodality Contrast Agents for the Detection of Thrombi and for Targeting Thrombolysis: in Vitro and in Vivo Experiments. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42525-42535. [PMID: 29160060 DOI: 10.1021/acsami.7b12689] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Thrombotic disease is extremely harmful to human health, and early detection and treatment can improve the prognosis and reduce mortality. Multimodal molecular imaging can provide abundant information about thrombi, but to date, few studies have used multimodal and multifunctional nanoparticles (NPs) for thrombus detection and for targeting thrombolysis. In this study, phase transition multimodal and multifunctional NPs (EWVDV-Fe-Ink-PFH NPs) were constructed for the first time using a three-step emulsification and carbodiimide method, and the physical and chemical properties of the NPs were investigated. The targeting abilities of the NPs and multimodal imaging, that is, photoacoustic, magnetic resonance, and ultrasound imaging, were successfully achieved in vitro and in vivo. The ability of the EWVDV peptide on the NPs to effectively target the P-selectin of thrombi was confirmed by multimodal imaging and pathology, and the penetration depths of the NPs into the thrombi were far deeper than the previously reported depths. Moreover, a perfluorohexane (PFH) phase transition induced by low-intensity focused ultrasound irradiation enabled the EWVDV-Fe-Ink-PFH NPs to cause thrombolysis in vitro. In summary, EWVDV-Fe-Ink-PFH NPs are a theranostic contrast agent that will provide a simple, effective, and noninvasive approach for the diagnosis and treatment of thrombosis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Jun Zhou
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Yixin Zhong
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Yu Zhang
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Jia Liu
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Yuli Chen
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Liming Deng
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Danli Sheng
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Zhigang Wang
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Dajing Guo
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| |
Collapse
|
8
|
Wu J, Zhu H, Yang G, Wang Y, Wang Y, Zhao S, Zhao M, Peng S. IQCA-TAVV: To explore the effect of P-selectin, GPIIb/IIIa, IL-2, IL-6 and IL-8 on deep venous thrombosis. Oncotarget 2017; 8:91391-91401. [PMID: 29207652 PMCID: PMC5710932 DOI: 10.18632/oncotarget.20588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
Deep vein thrombosis (DVT) associates with considerable morbidity, functional disability and mortality. Due to the lack of suitable inhibitor the correlation of various factors in DVT onset remains unknown. In this context we analyzed the structure of anti-platelet aggregation agent, P-selectin down-regulator, GPIIb/IIIa down-regulator and anti-inflammatory agent, thereby designed N-(3S-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)- Thr-Ala-Arg-Gly-Asp(Val)-Val (IQCA-TAVV) as an inhibitor of DVT to receive evaluations. The docking predicted that IQCA-TAVV can target P-selectin and GPIIb/IIIa. The UV showed that IQCA-TAVV can act on P-selectin and GPIIb/IIIa. ELISA indicated that IQCA-TAVV concentration dependently inhibited activated platelets to express P-selectin and GPIIb/IIIa, and the minimal effective concentration was 1 nM. IC50 of IQCA-TAVV against platelet aggregation induced by arachidonic acid, adenosine diphosphate and platelet activating factor fell within a range of 0.13 nM to 0.30 nM. In vivo IQCA-TAVV dose-dependently inhibited venous thrombosis and the minimal effective dose was 1 nmol/kg. On ear edema model the anti-inflammation activity of 10 nmol/kg IQCA-TAVV equaled that of 1.1mmol/kg aspirin. The concentration of IL-2, IL-6 and IL-8 in the serum of the ear edema mice were also significantly decreased by 10 nmol/kg IQCA-TAVV. Even at 1 μmol/kg of dose IQCA-TAVV still did not injure the kidney, the liver, and the nerves of healthy mice. Thereby IQCA-TAVV depicts a relationship of three levels (inhibiting platelet activation, targeting externalized membrane receptor, decreasing serum inflammatory factor) for the down-regulation of P-selectin, GPIIb/IIIa, IL-2, IL-6 and IL-8 in DVT.
Collapse
Affiliation(s)
- Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, PR China
| | - Haimei Zhu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, PR China
| | - Guodong Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, PR China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, PR China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, PR China
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, PR China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, PR China
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, PR China
| |
Collapse
|
9
|
Wang X, Wang Y, Wu J, Gui L, Zhang X, Zheng M, Wang Y, Zhao S, Li Z, Zhao M, Peng S. Docking based design of diastereoisomeric MTCA as GPIIb/IIIa receptor inhibitor. Bioorg Med Chem Lett 2017; 27:5114-5118. [PMID: 29108753 DOI: 10.1016/j.bmcl.2017.10.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
In GPIIb/IIIa mediated arterial thrombosis platelet activation plays a central role. To discover platelet activation inhibitor the pharmacophores of GPIIb/IIIa receptor inhibitors and anti-thrombotic agents were analyzed. This led to the design of (1R,3S)- and (1S,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acids as GPIIb/IIIa inhibitors. Comparing to (1S,3S)-isomer (1R,3S)-isomer had lower cdocker interaction energy. AFM image showed that the minimal effective concentration of (1S,3S)-isomer and (1R,3S)-isomer inhibiting platelet activation were 10-5 M and 10-6 M, respectively. In vivo 1 μmol/kg of oral (1S,3S)-isomer effectively inhibited the rats to form arterial thrombus and down regulated GPIIb/IIIa expression, but the activities were significantly lower than those of 1 μmol/kg of oral (1R,3S)-isomer. Both (1S,3S)-isomer and (1R,3S)-isomer can be safely used for structural modifications, but (1R,3S)-isomer should be superior to (1S,3S)-isomer.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Lin Gui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Meiqing Zheng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ze Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|