1
|
Casagualda C, López-Moral A, Alfonso-Triguero P, Lorenzo J, Alibés R, Busqué F, Ruiz-Molina D. Mussel-Inspired Multifunctional Polyethylene Glycol Nanoparticle Interfaces. Biomimetics (Basel) 2024; 9:531. [PMID: 39329553 PMCID: PMC11429798 DOI: 10.3390/biomimetics9090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles (NPs) are receiving increasing interest in biomedical applications. However, due to their large surface area, in physiological environments, they tend to interact with plasma proteins, inducing their agglomeration and ultimately resulting in a substantial efficiency decrease in diagnostic and therapeutic applications. To overcome such problems, NPs are typically coated with a layer of hydrophilic and biocompatible polymers, such as PEG chains. However, few examples exist in which this property could be systematically fine-tuned and combined with added properties, such as emission. Herein, we report a novel mussel-inspired catechol-based strategy to obtain biocompatible and multifunctional coatings, using a previously developed polymerization methodology based on the formation of disulfide bridges under mild oxidative conditions. Two families of NPs were selected as the proof of concept: mesoporous silica NPs (MSNPs), due to their stability and known applications, and magnetite NPs (Fe3O4 NPs), due to their small size (<10 nm) and magnetic properties. The PEG coating confers biocompatibility on the NPs and can be further functionalized with bioactive molecules, such as glucose units, through the end carboxylic acid moieties. Once we demonstrated the feasibility of our approach to obtaining PEG-based coatings on different families of NPs, we also obtained multifunctional coatings by incorporating fluorescein functionalities. The resulting coatings not only confer biocompatibility and excellent cell internalization, but also allow for the imaging and tracking of NPs within cells.
Collapse
Affiliation(s)
- Carolina Casagualda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Alba López-Moral
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Unnikrishnan G, Joy A, Megha M, Kolanthai E, Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. DISCOVER NANO 2023; 18:157. [PMID: 38112849 PMCID: PMC10730791 DOI: 10.1186/s11671-023-03943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The nanosystems for delivering drugs which have evolved with time, are being designed for greater drug efficiency and lesser side-effects, and are also complemented by the advancement of numerous innovative materials. In comparison to the organic nanoparticles, the inorganic nanoparticles are stable, have a wide range of physicochemical, mechanical, magnetic, and optical characteristics, and also have the capability to get modified using some ligands to enrich their attraction towards the molecules at the target site, which makes them appealing for bio-imaging and drug delivery applications. One of the strong benefits of using the inorganic nanoparticles-drug conjugate is the possibility of delivering the drugs to the affected cells locally, thus reducing the side-effects like cytotoxicity, and facilitating a higher efficacy of the therapeutic drug. This review features the direct and indirect effects of such inorganic nanoparticles like gold, silver, graphene-based, hydroxyapatite, iron oxide, ZnO, and CeO2 nanoparticles in developing effective drug carrier systems. This article has remarked the peculiarities of these nanoparticle-based systems in pulmonary, ocular, wound healing, and antibacterial drug deliveries as well as in delivering drugs across Blood-Brain-Barrier (BBB) and acting as agents for cancer theranostics. Additionally, the article sheds light on the plausible modifications that can be carried out on the inorganic nanoparticles, from a researcher's perspective, which could open a new pathway.
Collapse
Affiliation(s)
- Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | - M Senthilkumar
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India.
| |
Collapse
|
3
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644564] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
With growing interest, a large number of researches have been conducted on carbon-based nanomaterials (CBNs). However, their uses are limited due to comprehensive potential environmental and human health effects. It is often confusing for researchers to make an informed choice regarding the versatile carbon-based nanocarrier system and its potential applications. This review has highlighted emerging applications and cutting-edge progress of CBNs in drug delivery. Some critical factors like enzymatic degradation, surface modification, biological interactions, and bio-corona have been discussed here. These factors will help to fabricate CBNs for effective drug delivery. This review also addresses recent advancements in carbon-based target specific and release controlled drug delivery to improve disease treatment. The scientific community has turned their research efforts into the development of novel production methods of CBNs to make their production more attractive to the industrial sector. Due to the nanosize and diversified physical properties, these CBNs have demonstrated distinct biological interaction. Thus long-term preclinical toxicity study is recommended before finally translating to clinical application.
Collapse
|
5
|
Rasheed T, Hassan AA, Kausar F, Sher F, Bilal M, Iqbal HM. Carbon nanotubes assisted analytical detection – Sensing/delivery cues for environmental and biomedical monitoring. Trends Analyt Chem 2020; 132:116066. [DOI: 10.1016/j.trac.2020.116066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Saleemi M, Kong Y, Yong P, Wong E. An overview of recent development in therapeutic drug carrier system using carbon nanotubes. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101855] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2020; 11:2205-2231. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.
Collapse
|
8
|
Zhou S, Ji H, Liu L, Feng S, Fu Y, Yang Y, Lü C. Mussel-inspired coordination functional polymer brushes-decorated rGO-stabilized silver nanoparticles composite for antibacterial application. Polym Chem 2020. [DOI: 10.1039/d0py00180e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A catechol-terminated coordination functional polymer-modified rGO supported AgNPs composite was fabricated. Grafted polymer brushes improve the material's hydrophilicity and dispersion stability of AgNPs on rGO, enhancing antibacterial activity.
Collapse
Affiliation(s)
- Shengnan Zhou
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
- Institute of Chemistry
| | - Haixun Ji
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Linjing Liu
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Sijia Feng
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Yuqin Fu
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Yu Yang
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Changli Lü
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
9
|
Xiao Y, Chen L, Chen X, Xiao B. Current strategies to enhance the targeting of polydopamine-based platforms for cancer therapeutics. J Drug Target 2019; 28:142-153. [PMID: 31305176 DOI: 10.1080/1061186x.2019.1644650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yin Xiao
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Lin Chen
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Xiaoliang Chen
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia Autonomous region, China
| |
Collapse
|
10
|
Maiti D, Tong X, Mou X, Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 2019; 9:1401. [PMID: 30914959 PMCID: PMC6421398 DOI: 10.3389/fphar.2018.01401] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
The study of carbon-based nanomaterials (CBNs) for biomedical applications has attracted great attention due to their unique chemical and physical properties including thermal, mechanical, electrical, optical and structural diversity. With the help of these intrinsic properties, CBNs, including carbon nanotubes (CNT), graphene oxide (GO), and graphene quantum dots (GQDs), have been extensively investigated in biomedical applications. This review summarizes the most recent studies in developing of CBNs for various biomedical applications including bio-sensing, drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Debabrata Maiti
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Menezes BRCD, Rodrigues KF, Fonseca BCDS, Ribas RG, Montanheiro TLDA, Thim GP. Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B 2019; 7:1343-1360. [PMID: 32255006 DOI: 10.1039/c8tb02419g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, thermal, electronic, and biological properties due to their particular atomic structure made of graphene sheets that are rolled into cylindrical tubes. Due to their outstanding properties, CNTs have been used in several technological fields. Currently, the most prominent research area of CNTs focuses on biomedical applications, using these materials to produce hybrid biosensors, drug delivery systems, and high performance composites for implants. Although a great number of research studies have already shown the advantages of CNT-based biomedical devices, their clinical use for in vivo application has not been consummated. Concerns related to their toxicity, biosafety, and biodegradation still remain. The effect of CNTs on the human body and the ecosystem is not well established, especially due to the lack of standardization of toxicological tests, which generate contradictions in the results. CNTs' toxicity must be clarified to enable the medical use of these exceptional materials in the near future. In this review, we summarize recent advances in developing biosensors, drug delivery systems, and implants using CNTs as smart biomaterials to identify pathogens, load/deliver drugs and enhance the mechanical and antimicrobial performance of implants.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Divisão de Ciências Fundamentais, Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228970, Brazil.
| | | | | | | | | | | |
Collapse
|
12
|
Lu W, Liao Y, Jiang C, Wang R, Shan X, Chen Q, Sun G, Liu J. Polydopamine-coated NaGdF4:Dy for T1/T2-weighted MRI/CT multimodal imaging-guided photothermal therapy. NEW J CHEM 2019. [DOI: 10.1039/c9nj00561g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T1/T2-weighted MRI/CT imaging-guided PTT agent NaGdF4:Dy@PPF was prepared and demonstrated its promising application for early diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Wei Lu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Yuxuan Liao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Chunzhu Jiang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Ruoming Wang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Xueru Shan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Qian Chen
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Guoying Sun
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Jianhua Liu
- Department of Radiology
- Second Hospital of Jilin University
- Changchun
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| |
Collapse
|
13
|
Zhang L, Peng G, Li J, Liang L, Kong Z, Wang H, Jia L, Wang X, Zhang W, Shen JW. Molecular dynamics study on the configuration and arrangement of doxorubicin in carbon nanotubes. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Mrówczyński R. Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7541-7561. [PMID: 28786657 DOI: 10.1021/acsami.7b08392] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since Lee published a pioneering paper about polydopamine (PDA), application of that polymer in a number of areas has grown enormously in the last 10 years and is still growing. PDA's spectacular success can be attributed to its unique features, i.e., simple preparation protocol, strong adhesive properties, easy and straightforward functionalization, and biocompatibility. Therefore, this polymer has attracted the attention of a vast group of scientists, including those working in the field of nanomedicine. In consequence, polydopamine has been merged with various nanostructures that differ in size and nature, which has resulted in novel types of multifunctional nanomaterials that have recently been extensively exploited in nanomedicine and particularly in cancer therapy. The aim of this article is to offer insight into the latest achievements (up until the end of 2016) in the field of synthesis and application of nanomaterials based on polydopamine and their application in cancer therapy. The conclusions regarding the application of polydopamine-based nanoplatforms in this area and future prospects are given at the end.
Collapse
Affiliation(s)
- Radosław Mrówczyński
- NanoBioMedical Centre , Adam Mickiewicz University in Poznan , Umultowska 85 , 61-614 Poznan , Poland
| |
Collapse
|
15
|
Samadishadlou M, Farshbaf M, Annabi N, Kavetskyy T, Khalilov R, Saghfi S, Akbarzadeh A, Mousavi S. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1314-1330. [DOI: 10.1080/21691401.2017.1389746] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mehrdad Samadishadlou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Material Science and Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Taras Kavetskyy
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
- The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Siamak Saghfi
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Sepideh Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|