1
|
Guo YT, Lu Y, Jia YY, Qu HN, Qi D, Wang XQ, Song PY, Jin XS, Xu WH, Dong Y, Liang YY, Quan CS. Predictive Value of Pin1 in Cervical Low-Grade Squamous Intraepithelial Lesions and Inhibition of Pin1 Exerts Potent Anticancer Activity against Human Cervical Cancer. Aging Dis 2020; 11:44-59. [PMID: 32010480 PMCID: PMC6961766 DOI: 10.14336/ad.2019.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Many oncogenes are involved in the progression from low-grade squamous intraepithelial lesions (LSILs) to high-grade squamous intraepithelial lesions (HSILs); which greatly increases the risk of cervical cancer (CC). Thus, a reliable biomarker for risk classification of LSILs is urgently needed. The prolyl isomerase Pin1 is overexpressed in many cancers and contributes significantly to tumour initiation and progression. Therefore, it is important to assess the effects of cancer therapies that target Pin1. In our study, we demonstrated that Pin1 may serve as a biomarker for LSIL disease progression and may constitute a novel therapeutic target for CC. We used a the novel Pin1 inhibitor KPT-6566, which is able to covalently bind to Pin1 and selectively target it for degradation. The results of our investigation revealed that the downregulation of Pin1 by shRNA or KPT-6566 inhibited the growth of human cervical cancer cells (CCCs). We also discovered that the use of KPT-6566 is a novel approach to enhance the therapeutic efficacy of cisplatin (DDP) against CCCs in vitro and in vivo. We showed that KPT-6566-mediated inhibition of Pin1 blocked multiple cancer-driving pathways simultaneously in CCCs. Furthermore, targeted Pin1 treatment suppressed the metastasis and invasion of human CCCs, and downregulation of Pin1 reversed the epithelial-mesenchymal transition (EMT) of CCCs via the c-Jun/slug pathway. Collectively, we showed that Pin1 may be a marker for the risk of progression to HSIL and that inhibition of Pin1 has anticancer effects against CC.
Collapse
Affiliation(s)
- Yan-Tong Guo
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Lu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yi-Yang Jia
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hui-Nan Qu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Da Qi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xin-Qi Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei-Ye Song
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiang-Shu Jin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wen-Hong Xu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuan Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ying-Ying Liang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cheng-Shi Quan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|