1
|
Evtushenko EG, Gavrilina ES, Vasilyeva AD, Yurina LV, Kurochkin IN. Highly Sensitive Measurement of Horseradish Peroxidase Using Surface-Enhanced Raman Scattering of 2,3-Diaminophenazine. Molecules 2024; 29:793. [PMID: 38398545 PMCID: PMC10891785 DOI: 10.3390/molecules29040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The development of various enzyme-linked immunosorbent assays (ELISAs) coupled with surface-enhanced Raman scattering (SERS) detection is a growing area in analytical chemistry due to their potentially high sensitivity. A SERS-based ELISA with horseradish peroxidase (HRP) as an enzymatic label, an o-phenylenediamine (oPD) substrate, and a 2,3-diaminophenazine (DAP) enzymatic product was one of the first examples of such a system. However, the full capabilities of this long-known approach have yet to be revealed. The current study addresses a previously unrecognized problem of SERS detection stage performance. Using silver nanoparticles and model mixtures of oPD and DAP, the effects of the pH, the concentration of the aggregating agent, and the particle surface chloride stabilizer were extensively evaluated. At the optimal mildly acidic pH of 3, a 0.93 to 1 M citrate buffer, and AgNPs stabilized with 20 mM chloride, a two orders of magnitude advantage in the limits of detection (LODs) for SERS compared to colorimetry was demonstrated for both DAP and HRP. The resulting LOD for HRP of 0.067 pmol/L (1.3 amol per assay) underscores that the developed approach is a highly sensitive technique. We suppose that this improved detection system could become a useful tool for the development of SERS-based ELISA protocols.
Collapse
Affiliation(s)
- Evgeniy G. Evtushenko
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elizaveta S. Gavrilina
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Alexandra D. Vasilyeva
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Lyubov V. Yurina
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Ilya N. Kurochkin
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
2
|
Sun X. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal Chim Acta 2022; 1206:339226. [PMID: 35473867 DOI: 10.1016/j.aca.2021.339226] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Glucose detection is of vital importance to diabetes diagnosis and treatment. Optical approaches in glucose sensing have received much attention in recent years due to the relatively low cost, portable, and mini-invasive or non-invasive potentials. Surface enhanced Raman spectroscopy (SERS) endows the benefits of extremely high sensitivity because of enhanced signals and specificity due to the fingerprint of molecules of interest. However, the direct detection of glucose through SERS was challenging because of poor adsorption of glucose on bare metals and low cross section of glucose. In order to address these challenges, several approaches were proposed and utilized for glucose detection through SERS. This review article mainly focuses on the development of surface enhanced Raman scattering based glucose sensors in recent 10 years. The sensing mechanisms, rational design and sensing properties to glucose are reviewed. Two strategies are summarized as intrinsic sensing and extrinsic sensing. Four general categories for glucose sensing through SERS are discussed including SERS active platform, partition layer functionalized surface, boronic acid based sensors, and enzymatic reaction based biosensors. Finally, the challenges and outlook for SERS based glucose sensors are also presented.
Collapse
Affiliation(s)
- Xiangcheng Sun
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States.
| |
Collapse
|
3
|
Mu M, Wen S, Hu S, Zhao B, Song W. Putting surface-enhanced Raman spectroscopy to work for nanozyme research: methods, materials and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
N-Benzoyl leucomethylene blue as a novel substrate for the assays of horseradish peroxidase by spectrophotometry and capillary electrophoresis–laser-induced fluorometry. ANAL SCI 2022; 38:651-655. [DOI: 10.1007/s44211-022-00078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
|
5
|
Nagy-Simon T, Hada AM, Suarasan S, Potara M. Recent advances on the development of plasmon-assisted biosensors for detection of C-reactive protein. J Mol Struct 2021; 1246:131178. [DOI: 10.1016/j.molstruc.2021.131178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023]
|
6
|
Hu S, Jiang Y, Wu Y, Guo X, Ying Y, Wen Y, Yang H. Enzyme-Free Tandem Reaction Strategy for Surface-Enhanced Raman Scattering Detection of Glucose by Using the Composite of Au Nanoparticles and Porphyrin-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55324-55330. [PMID: 33228360 DOI: 10.1021/acsami.0c12988] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, an S hybrid nanosheet with multiple functions is synthesized by in situ modification of gold nanoparticles (AuNPs) onto two-dimensional (2D) metalloporphyrinic metal-organic framework (MOF) (Cu-tetra(4-carboxyphenyl)porphyrin chloride(Fe(III)), designated as AuNPs/Cu-TCPP(Fe). Cu-TCPP(Fe) nanosheets contribute peroxidase-like activity, and AuNPs have glucose oxidase (GOx) mimicking performance, which induce the cascade catalysis reactions to convert glucose into hydrogen peroxide (H2O2), and then, by using AuNP catalysis, H2O2 oxidizes the no Raman-active leucomalachite green (LMG) into the Raman-active malachite green (MG). Simultaneously, in the presence of AuNPs, sensitive and selective surface-enhanced Raman scattering (SERS) determination of glucose can be achieved. The bioenzyme-free SERS assay based on such AuNPs/Cu-TCPP(Fe) nanosheets is used for detection of glucose in saliva, showing good recovery from 96.9 to 100.8%. The work paves a new way to design a nanozyme-based SERS protocol for biomolecule analysis.
Collapse
Affiliation(s)
- Sen Hu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
7
|
Lin T, Song YL, Liao J, Liu F, Zeng TT. Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine (Lond) 2020; 15:2971-2989. [PMID: 33140686 DOI: 10.2217/nnm-2020-0361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a Raman spectroscopy technique that has been widely used in food safety, environmental monitoring, medical diagnosis and treatment and drug monitoring because of its high selectivity, sensitivity, rapidness, simplicity and specificity in identifying molecular structures. This review introduces the detection mechanism of SERS and summarizes the most recent progress concerning the use of SERS for the detection and characterization of molecules, providing references for the later research of SERS in detection fields.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Juan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Fang Liu
- Department of Laboratory Pathology, Xijing Hospital, Fourth Military Medical University, Xian, 710054, PR China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
8
|
Rafalsky VV, Zyubin AY, Moiseeva EM, Samusev IG. Prospects for Raman spectroscopy in cardiology. ACTA ACUST UNITED AC 2020. [DOI: 10.15829/1728-8800-2020-1-2394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Li J, Ding J, Liu X, Tang B, Bai X, Wang Y, Li S, Wang X. Label-free serum detection of Trichinella spiralis using surface-enhanced Raman spectroscopy combined with multivariate analysis. Acta Trop 2020; 203:105314. [PMID: 31866336 DOI: 10.1016/j.actatropica.2019.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Based on blood serum surface-enhanced Raman spectroscopy (SERS) analysis, this paper proposed a simple and unlabeled non-invasive serum detection for T. spiralis infection. Serum samples were collected and analyzed from 40 rats at 0 days post infection (dpi) (normal rats), 19 uninfected rats, and 16 rats infected with T. spiralis at 28 dpi, using SERS measurements. Multivariate statistical techniques, such as linear discriminant analysis (LDA) and principal components analysis (PCA), were used to analyze and identify the obtained blood serum SERS spectra. The diagnosis algorithms, based on PCA-LDA, achieved a diagnostic sensitivity of 87.5%, a specificity of 94.7%, and an accuracy of 91.4% for separating the samples infected with T. spiralis from the control samples. This exploratory study demonstrated that colloidal Ag NPs-based SERS serum analysis technique combined with PCA-LDA has a great potential in improving the detection of T. spiralis infection and onsite screening.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shicun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
10
|
Jia M, Li S, Zang L, Lu X, Zhang H. Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E730. [PMID: 30223597 PMCID: PMC6165412 DOI: 10.3390/nano8090730] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
Analyzing biomolecules is essential for disease diagnostics, food safety inspection, environmental monitoring and pharmaceutical development. Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for detecting biomolecules due to its high sensitivity, rapidness and specificity in identifying molecular structures. This review focuses on the SERS analysis of biomolecules originated from humans, animals, plants and microorganisms, combined with nanomaterials as SERS substrates and nanotags. Recent advances in SERS detection of target molecules were summarized with different detection strategies including label-free and label-mediated types. This comprehensive and critical summary of SERS analysis of biomolecules might help researchers from different scientific backgrounds spark new ideas and proposals.
Collapse
Affiliation(s)
- Min Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Liguo Zang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
11
|
Shen Y, Miao P, Hu C, Wu J, Gao M, Xu P. SERS-Based Plasmon-Driven Reaction and Molecule Detection on a Single Ag@MoS2
Microsphere: Effect of Thickness and Crystallinity of MoS2. ChemCatChem 2018. [DOI: 10.1002/cctc.201800482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunfeng Shen
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China)
| | - Peng Miao
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China)
| | - Chang Hu
- Department of Physics; Harbin Institute of Technology; Harbin 150001 P.R. China)
| | - Jie Wu
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China)
| | - Mansha Gao
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China)
| | - Ping Xu
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China)
| |
Collapse
|
12
|
Wu J, Li S, Wei H. Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. NANOSCALE HORIZONS 2018; 3:367-382. [PMID: 32254124 DOI: 10.1039/c8nh00070k] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over decades, as alternatives to natural enzymes, highly-stable and low-cost artificial enzymes have been widely explored for various applications. In the field of artificial enzymes, functional nanomaterials with enzyme-like characteristics, termed as nanozymes, are currently attracting immense attention. Significant progress has been made in nanozyme research due to the exquisite control and impressive development of nanomaterials. Since nanozymes are endowed with unique properties from nanomaterials, an interesting investigation is multifunctionality, which opens up new potential applications for biomedical sensing and sustainable chemistry due to the combination of two or more distinct functions of high-performance nanozymes. To highlight the progress, in this review, we discuss two representative types of multifunctional nanozymes, including iron oxide nanomaterials with magnetic properties and metal nanomaterials with surface plasmon resonance. The applications are also covered to show the great promise of such multifunctional nanozymes. Future challenges and prospects are discussed at the end of this review.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | |
Collapse
|
13
|
Moore TJ, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma B. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis. BIOSENSORS 2018; 8:E46. [PMID: 29751641 PMCID: PMC6022968 DOI: 10.3390/bios8020046] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 01/24/2023]
Abstract
For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.
Collapse
Affiliation(s)
- T Joshua Moore
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Amber S Moody
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Taylor D Payne
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Grace M Sarabia
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Alyssa R Daniel
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Bhavya Sharma
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| |
Collapse
|