Lee S. Good to the Last Drop: Interfacial Droplet Chemistry, from Crystals to Biological Membranes.
Acc Chem Res 2018;
51:2524-2534. [PMID:
30247878 DOI:
10.1021/acs.accounts.8b00277]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of the liquid-liquid interface has a long and storied history yet still holds important implications for science and technology. Although deep examination of this buried interface poses challenges, recent progress in experimental and theoretical methodology has allowed for advanced understanding of the molecular bases of such interfaces. This Account will focus on the behavior of surfaces of aqueous microdroplets immersed in an immiscible phase, exhibiting physicochemical behavior dependent on the presence of interfacial self-assembled structures. Amphiphiles spontaneously form self-assembled nanostructures at the liquid interface, creating a soft liquid surface for the aqueous microdroplet that can modulate its behavior. A prominent characteristic of a micron-sized droplet is its elevated surface area/volume ratio, a feature that presents opportunities for investigating the role of the interface in aspects of droplet chemistry. In two notable examples, a surfactant self-assembly can act as a template for crystal nucleation of droplet solutes at the monolayer level, while at the level of a bilayer, formed when two monolayer-covered droplets are made to adhere, the apposition of monolayers bears remarkable similarities to cell membranes. Each type of system provides arbitrary control of important factors, both for studying crystallization nucleation and for modeling semipermeable lipid membranes at an interdroplet contact zone, the droplet interface bilayer (DIB). The droplet bilayer allows for direct observation of species transport across an unsupported bilayer and versatile parameter control to expore the effects of membrane lipid structure on bilayer transport. It is demonstrated that molecular shape for monoglycerides and phospholipids influences the surface characteristics of monolayers and bilayers. Additionally, subtle interfacial interactions between aqueous contents (ions, solutes) and the monolayer/bilayer are shown to have a marked influence on lipid packing and permeability. It is anticipated that this successful demonstration of surface engineering at the micron scale will deliver cogent insights into many biologically relevant phenomena, such as membrane transport and biomineralization.
Collapse