1
|
Yang X, Shi Y, Zhang H, Chen Z. Utilizing a synergistic strategy that combines electromagnetic and chemical enhancement to analyze the SERS effect of the Fe 3O 4@GO@Ag on PAHs detection. J Colloid Interface Sci 2025; 678:532-539. [PMID: 39214005 DOI: 10.1016/j.jcis.2024.08.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
A comprehensive understanding of the enhancement mechanism of the substrate material is crucial to ensure the repeatability and functionality of SERS detection technology. Therefore, this study introduces a theoretical analysis method that integrates electromagnetic and chemical enhancement to achieve a comprehensive understanding of the SERS effect on the magnetic composite substrate. The visual model is employed in this study to comprehensively analyze and illustrate the electric field enhancement and optical effects of composite substrate materials. The study also elucidated the adsorption and charge transfer between the substrate material and target molecules. Based on this theory, Fe3O4@GO@Ag material was prepared and used to detect hydrophobic organic molecules such as polycyclic aromatic hydrocarbons (PAHs), with a concentration as low as 0.5 nM. This study comprehensively analyzed the SERS enhancement effect of the composite substrate for the first time, and prepared a magnetic composite substrate material for the detection of hydrophobic organic molecules, opening up a new avenue for theoretical guidance and experimental exploration in SERS detection and analysis.
Collapse
Affiliation(s)
- Xu Yang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Yunbo Shi
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China.
| | - Haoze Zhang
- School of Instrumentation Science and Engineering, Harbin 150006, China
| | - Zhaoyu Chen
- Space Environment Simulation Research Infrastructure, Harbin 150006, China
| |
Collapse
|
2
|
Feng J, Zhou P, Qin C, Chen R, Chen Q, Li L, Chen J, Cheng H, Huang W, Cao J. Magnetic solid-phase extraction-based surface-enhanced Raman spectroscopy for label-free therapeutic drug monitoring of carbamazepine and clozapine in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123924. [PMID: 38262293 DOI: 10.1016/j.saa.2024.123924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Determination of antiepileptic drugs and antipsychotics in human serum is significant in individualized drug administration and therapeutic drug monitoring (TDM). In this study, we developed a rapid label-free TDM method for the antiepileptic drug carbamazepine (CBZ) and the antipsychotic clozapine (CLO) in human serum. This detection strategy is based on the combination of surface-enhanced Raman scattering (SERS) and magnetic solid-phase extraction (MSPE). Initially, Fe3O4@SiO2@MIL-101(Fe) nanocomposites were synthesized by the layer-by-layer self-assembly method and characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, ultraviolet-visible, and Fourier transform infrared analyses. Subsequently, CBZ and CLO were detected in human serum using Fe3O4@SiO2@MIL-101(Fe) as the solid-phase extraction adsorbent and Ag nanoparticles as SERS substrates. The potential of the MSPE-SERS method for the label-free TDM of CBZ and CLO was then investigated. Fe3O4@SiO2@MIL-101(Fe) prevents magnetic particle aggregation and demonstrates rapid magnetic separation capability that simplifies the pretreatment process and reduces interference from complex matrices. Its large surface area can effectively enrich targets in complex matrices, thereby improving the SERS detection sensitivity. The linearity between CBZ and CLO was excellent over the concentration range of 0.1-100 µg/mL (calculated as the intensity of the SERS characteristic peaks of CBZ and CLO at 728 cm and 1054 cm-1, respectively), with correlation coefficients (R2) of 0.9987 and 0.9957, and detection limits of 0.072 and 0.12 µg/mL, respectively. The recoveries of CBZ with CLO ranged from 94.0 % to 105.0 %, and their relative standard deviations were <6.8 %. Compared to other assays, the developed MSPE-SERS method has the advantages of simple sample pretreatment, rapid detection, and good reproducibility, which provides a novel approach for the TDM of other drugs.
Collapse
Affiliation(s)
- Jun Feng
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China
| | - Pei Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Chunli Qin
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China
| | - Ruijue Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Qiying Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Lina Li
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China
| | - Jun Chen
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Jinru Cao
- Dongguan Key Laboratory of Precision Molecular Diagnostics, Prenatal Diagnosis Center, Dongguan Songshan Lake Central Hospital, Dongguan 523200, Guangdong, PR China.
| |
Collapse
|
3
|
Hu W, Xia L, Hu Y, Li G. Fe 3O 4-carboxyl modified AuNPs-chitosan@AgNPs as a robust surface-enhanced Raman scattering substrate for rapid analysis of tryptamine and ofloxacin in aquatic products. Talanta 2024; 266:125057. [PMID: 37562085 DOI: 10.1016/j.talanta.2023.125057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Rapid and accurate quantification of trace targets in complex samples is an extremely challenging issue in fast analysis field. Herein, we developed Fe3O4-carboxyl modified AuNPs-chitosan@AgNPs composite (Fe3O4-AuNCs-Cs@AgNPs) as a robust surface-enhanced Raman scattering (SERS) substrate for rapid analysis of tryptamine (TPA) and ofloxacin (OFX). The substrate possessed abundant surficial active sites of -NH2, -OH and -COOH groups. The substrate exhibited good SERS activity for several different model molecules with enhancement factors (EFs) of 1.2 × 108 for 4-mercaptobenzoic acid. The substrate presented good stability for detection of TPA at pH 6.0 and OFX at pH 8.0, and relative standard deviations less than 5.0% for intra-batch and 6.0% for inter-batch. Also, the substrate possessed good time-stability within 50 days. The substrate integrated advantages of efficient enrichment, fast magnetic separation, and strong localized surface plasmon resonance properties of AgNPs. With versatile merits, TPA and OFX can be enriched and separated within 10 min. SERS methods for analysis of TPA and OFX were developed with detection limits of 35.5 μg/L and 15.8 μg/L, respectively. TPA and OFX were actually found in aquatic product, and recoveries during sample analysis were 89.3%-110% for TPA and 89.3%-96.8% for OFX. The analytical process completed within 30 min via enrichment-separation-detection all-in-one, exhibiting great potential for rapid analysis of toxic biogenic monoamines and antibiotic residues in food.
Collapse
Affiliation(s)
- Wenyao Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Lu Y, Jin X, Li X, Liu M, Liu B, Zeng X, Chen J, Liu Z, Yu S, Xu Y. Controllable Preparation of Superparamagnetic Fe 3O 4@La(OH) 3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate. Polymers (Basel) 2023; 15:polym15010248. [PMID: 36616595 PMCID: PMC9824844 DOI: 10.3390/polym15010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Superparamagnetic Fe3O4 particles have been synthesized by solvothermal method, and a layer of dense silica sol polymer is coated on the surface prepared by sol-gel technique; then La(OH)3 covered the surface of silica sol polymer in an irregular shape by controlled in situ growth technology. These magnetic materials are characterized by TEM, FT-IR, XRD, SEM, EDS and VSM; the results show that La(OH)3 nanoparticles have successfully modified on Fe3O4 surface. The prepared Fe3O4@La(OH)3 inorganic polymer has been used as adsorbent to remove phosphate efficiently. The effects of solution pH, adsorbent dosage and co-existing ions on phosphate removal are investigated. Moreover, the adsorption kinetic equation and isothermal model are used to describe the adsorption performance of Fe3O4@La(OH)3. It was observed that Fe3O4@La(OH)3 exhibits a fast equilibrium time of 20 min, high phosphate removal rate (>95.7%), high sorption capacity of 63.72 mgP/g, excellent selectivity for phosphate in the presence of competing ions, under the conditions of phosphate concentration 30 mgP/L, pH = 7, adsorbent dose 0.6 g/L and room temperature. The phosphate adsorption process by Fe3O4@La(OH)3 is best described by the pseudo-second-order equation and Langmuir isotherm model. Furthermore, the real samples and reusability experiment indicate that Fe3O4@La(OH)3 could be regenerated after desorption, and 92.78% phosphate removing remained after five cycles. Therefore, La(OH)3 nanoparticles deposited on the surface of monodisperse Fe3O4 microspheres have been synthesized for the first time by a controlled in-situ growth method. Experiments have proved that Fe3O4@La(OH)3 particles with fast separability, large adsorption capacity and easy reusability can be used as a promising material in the treatment of phosphate wastewater or organic pollutants containing phosphoric acid functional group.
Collapse
Affiliation(s)
- Yao Lu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Xuna Jin
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Xiang Li
- Jilin Institute of Chemical Technology, School of Petrochemical Technology, Jilin 132022, China
| | - Minpeng Liu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Baolei Liu
- Jilin Institute of Chemical Technology, School of Petrochemical Technology, Jilin 132022, China
| | - Xiaodan Zeng
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
| | - Jie Chen
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
| | - Zhigang Liu
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
- Correspondence: (Z.L.); (S.Y.)
| | - Shihua Yu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
- Correspondence: (Z.L.); (S.Y.)
| | - Yucheng Xu
- Railway Transportation Department, Jilin Petrochemical Company, Jilin 132021, China
| |
Collapse
|
6
|
Huang H, Zhang Z, Li G. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application. BIOSENSORS 2022; 13:30. [PMID: 36671865 PMCID: PMC9855913 DOI: 10.3390/bios13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a kind of popular non-destructive and water-free interference analytical technology with fast response, excellent sensitivity and specificity to trace biotargets in biological samples. Recently, many researches have focused on the preparation of various magnetic nanoparticle-based SERS substrates for developing efficient bioanalytical methods, which greatly improved the selectivity and accuracy of the proposed SERS bioassays. There has been a rapid increase in the number of reports about magnetic SERS substrates in the past decade, and the number of related papers and citations have exceeded 500 and 2000, respectively. Moreover, most of the papers published since 2009 have been dedicated to analytical applications. In the paper, the recent advances in magnetic nanoparticle-based SERS substrates for bioanalysis were reviewed in detail based on their various morphologies, such as magnetic core-shell nanoparticles, magnetic core-satellite nanoparticles and non-spherical magnetic nanoparticles and their different functions, such as separation and enrichment, recognition and SERS tags. Moreover, the typical application progress on magnetic nanoparticle-based SERS substrates for bioanalysis of amino acids and protein, DNA and RNA sequences, cancer cells and related tumor biomarkers, etc., was summarized and introduced. Finally, the future trends and prospective for SERS bioanalysis by magnetic nanoparticle-based substrates were proposed based on the systematical study of typical and latest references. It is expected that this review would provide useful information and clues for the researchers with interest in SERS bioanalysis.
Collapse
Affiliation(s)
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Chen J, Tan L, Cui Z, Qu K, Wang J. Graphene Oxide Molecularly Imprinted Polymers as Novel Adsorbents for Solid-Phase Microextraction for Selective Determination of Norfloxacin in the Marine Environment. Polymers (Basel) 2022; 14:polym14091839. [PMID: 35567008 PMCID: PMC9101591 DOI: 10.3390/polym14091839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a novel sample pretreatment strategy of solid-phase microextraction using graphene oxide molecularly imprinted polymers as adsorbents coupled with high-performance liquid chromatography was developed to detect norfloxacin in the marine environment. As a carrier, the imprinted polymers were synthesized by precipitation polymerization with graphene oxide. Compared with graphene oxide non-imprinted polymers, the graphene oxide molecularly imprinted polymers exhibited higher adsorption capacity towards norfloxacin. The synthesized polymeric materials were packed into a molecularly imprinted solid-phase microextraction cartridge, and critical parameters affecting the extraction process were optimized. Under the optimized molecular imprinted solid-phase microextraction condition, the proposed method was applied to the analysis of norfloxacin for seawater and fish with satisfactory recovery (90.1–102.7%) and low relative standard deviation (2.06–5.29%, n = 3). The limit of detection was 0.15 μg L−1 and 0.10 μg kg−1 for seawater and fish, respectively. The study revealed that the proposed molecularly imprinted solid-phase microextraction represents an attractive sample pretreatment strategy for the analysis of norfloxacin in the marine environment.
Collapse
Affiliation(s)
- Jianlei Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Zhengguo Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
- Correspondence: (Z.C.); (J.W.); Tel.: +86-532-85836341 (Z.C.); +86-532-66782506 (J.W.)
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
- Correspondence: (Z.C.); (J.W.); Tel.: +86-532-85836341 (Z.C.); +86-532-66782506 (J.W.)
| |
Collapse
|
8
|
Rapid detection of chloramphenicol in food using SERS flexible sensor coupled artificial intelligent tools. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
High-performance detection of p-nitroaniline on defect-graphene SERS substrate utilizing molecular imprinting technique. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Barveen NR, Wang TJ, Chang YH. Photochemical decoration of silver nanoparticles on silver vanadate nanorods as an efficient SERS probe for ultrasensitive detection of chloramphenicol residue in real samples. CHEMOSPHERE 2021; 275:130115. [PMID: 33984904 DOI: 10.1016/j.chemosphere.2021.130115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture and farming industries have been seriously threatened by the illegal use of antibiotics as feed-additives to benefit the animal growth. Although various conventional chemical sensing approaches have been widely explored for the trace-level detection of antibiotics, the effective and accurate monitoring techniques are still highly demanded. Herein, we propose a novel surface-enhanced Raman scattering (SERS) substrate with the heterogeneous integration of silver nanoparticles (Ag NPs) on silver vanadate nanorods (β-AgVO3 NRs) for the ultrasensitive detection of popular antibiotic, chloramphenicol (CAP). The photochemical decoration of Ag NPs on the surface of β-AgVO3 NRs remarkably enhances the Raman signal intensity of CAP molecules by the synergistic action of the mechanisms of electromagnetic and chemical enhancement. The structural features of Ag-NPs@β-AgVO3-NRs favor the formation of hotspots at the interface between NPs and NRs by enhanced surface area and numerous active sites for the interaction with CAP molecules. The SERS measurement of CAP molecules on the Ag-NPs@β-AgVO3-NRs shows a trace-level limit of detection (10-10 M), high uniformity (5.29%), good reproducibility (3.89%), and high analytical enhancement factor (2.05 × 108). The proposed SERS substrate possesses excellent detection ability in monitoring real samples like tap water, milk and eye drops.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan; Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Yu-Hsu Chang
- Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| |
Collapse
|
11
|
Jing W, Wang J, Kuipers B, Bi W, Chen DDY. Recent applications of graphene and graphene-based materials as sorbents in trace analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Lv H, Guan Q, Wang Y, Zhang X. Mechanical power driven SPME-SERS ultra-fast detection of illegal additives in aquaculture water. RSC Adv 2021; 11:12893-12901. [PMID: 35423820 PMCID: PMC8697362 DOI: 10.1039/d0ra10227j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
A dual-function (extraction and detection) porous silver fiber with high enhancement effect was constructed based on a convenient electrochemical etching method. The prepared silver fiber not only had high enrichment capacity and good Surface Enhanced Raman Spectroscopy (SERS) performance but also had good laser stability and uniformity. A strategy combining mechanical power and integration of solid phase extraction (SPME) and SERS detection was used. Driven by mechanical power, the analyte malachite green (MG) was enriched on the prepared silver fiber after 40 seconds, which can realize an ultra-fast and sensitive detection with a detection limit of 8.48 × 10-9 M. At the same time, this fiber can be regenerated after being treated with NaBH4. The silver fiber can be used for the detection of MG and CV after being immersed in NaBH4 solution for a few minutes. After 5 cycles of processing, the measurement signals of the silver fiber can reach 70% of the initial signals. The mechanical power driven SPME-SERS (MPD-SPME-SERS) integrated detection method can be used to analyse aquaculture water within 1 minute with a good linear relationship.
Collapse
Affiliation(s)
- Handi Lv
- School of Chemistry and Chemical Engineering, Shandong University China
| | - Qi Guan
- School of Chemistry and Chemical Engineering, Shandong University China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Shandong University China
| | - Xiaoli Zhang
- School of Chemistry and Chemical Engineering, Shandong University China
| |
Collapse
|
13
|
Three-template magnetic molecular imprinted polymer for the rapid separation and specific recognition of illegal cooking oil markers. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Majeed SA. Combining microextraction methods with surface-enhanced Raman spectroscopy towards more selective and sensitive analyte detection by plasmonic metal nanoparticles. Analyst 2020; 145:6744-6752. [DOI: 10.1039/d0an01304h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Raman signals of analytes can be enhanced on the surface of noble nanoparticles by generating SERS signals, which can be further enhanced using microextraction (ME) techniques.
Collapse
|
15
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|
16
|
A Covalent Organic Framework-Derived Hydrophilic Magnetic Graphene Composite as a Unique Platform for Detection of Phthalate Esters from Packaged Milk Samples. Chromatographia 2019. [DOI: 10.1007/s10337-019-03741-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Song D, Yang R, Long F, Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J Environ Sci (China) 2019; 80:14-34. [PMID: 30952332 DOI: 10.1016/j.jes.2018.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering (SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles (MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPs-basedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
18
|
Li S, Wang Q, Song X, Bu Y. A green and general strategy for the synthesis of hollow Ag/CdS nanocomposites for superior SERS performance. CrystEngComm 2019. [DOI: 10.1039/c9ce00266a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we developed a convenient, environmentally friendly approach for the fabrication of hollow Ag/CdS composites, which presented superior SERS performance.
Collapse
Affiliation(s)
- Shanshan Li
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- People's Republic of China
| | - Qi Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- People's Republic of China
| | - Xinyu Song
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- People's Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- People's Republic of China
| |
Collapse
|
19
|
Zhang S, Yang Q, Zhou X, Li Z, Wang W, Zang X, Wang C, Shiddiky MJA, Murugulla AC, Nguyen NT, Wang Z, Yamauchi Y. Synthesis of nanoporous poly-melamine-formaldehyde (PMF) based on Schiff base chemistry as a highly efficient adsorbent. Analyst 2018; 144:342-348. [PMID: 30398492 DOI: 10.1039/c8an01623b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study proposes the construction of nanoporous poly-melamine-formaldehyde (PMF) through the Schiff base condensation reaction of paraformaldehyde and melamine. The PMF nanoparticles showed a good adsorption capability to some benzene-ring-containing dyes including acid fuchsine, nigrosine, and methyl orange. Moreover, the as-prepared PMF nanoparticles were employed as the coating adsorbent for the solid-phase microextraction (SPME) of seven volatile fatty acids (VFAs) with high enrichment factors. A PMF-assisted SPME method was established for the enrichment of VFAs from environmental water samples with satisfactory recoveries (88.5%-102.0%) and acceptable precisions (relative standard deviations <10.9%). This contribution might furnish an advanced benchmark for the exploitation of new porous organic polymers as the effective adsorbents for SPME or other fields of utilization.
Collapse
Affiliation(s)
- Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China. and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Qian Yang
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Xin Zhou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Wenjin Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Muhammad J A Shiddiky
- School of Environment and Science and Queensland Micro- and Nanotechnology Centre, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Adharvana Chari Murugulla
- Dr. MACS Bio-Pharma Private Limited, Plot no.79/B & C, EPIP Pashamyalaram, Patancheru Mandal, Sangareddy Dist., Telangana 502307, India
| | - Nam-Trung Nguyen
- School of Environment and Science and Queensland Micro- and Nanotechnology Centre, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
20
|
Wang Z, Wu S, Colombi Ciacchi L, Wei G. Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing. Analyst 2018; 143:5074-5089. [PMID: 30280724 DOI: 10.1039/c8an01266k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is one of the important techniques for sensing applications in biological analysis, disease diagnosis, environmental science, and food safety. Graphene provides an excellent nanoplatform for SERS sensing due to its two-dimensional flat structure, uniform electronic and photonic properties, excellent mechanical stability, atomic uniformity, and high biocompatibility. In this review, we summarize recent advances in the fabrication of various graphene-based nanoplatforms for SERS sensing. We present the strategies, such as self-assembly, in situ synthesis, one-pot synthesis, liquid phase reduction, and biomimetic synthesis, for the fabrication of graphene-based hybrid metallic and alloy nanoplatforms, and then demonstrate the potential applications of graphene-based nanoplatforms for the SERS sensing of ions, organic dyes, pesticides, bacteria, DNA, proteins, cells, and other chemicals in great detail. In addition, we also discuss the future development of this interesting research field and provide several perspectives. This work will be helpful for readers to understand the fabrication and sensing mechanisms of graphene-based SERS sensing nanoplatforms; meanwhile, it will promote the development of new materials and novel methods for high performance sensing and biosensing applications.
Collapse
Affiliation(s)
- Zhuqing Wang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, 246011 Anqing, China
| | | | | | | |
Collapse
|