1
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
2
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Ma J, Hu H, Xu Z, Liu J, Chen J, Chen B, Shi L, Luo H, Chen G, Xu H. Engineered Metallic Ion-Based Hydrogel for Tendon-Bone Reconstruction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6837-6848. [PMID: 38294888 DOI: 10.1021/acsami.3c16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Rotator cuff regeneration is hindered by compromised vascular architecture, inflammation, and instability of the reconstructed tendon-bone interface. Herein, inspired by the phenomenon of magnetic clasps being connected together by a specific structure, an engineered metallic ion-based hydrogel scaffold was constructed through a bioorthogonal click reaction between (DOPA)4-PEG5-N3 and DBCO-BMP-2 peptides and a photopolymerization process in the hydrogel matrix, exhibiting the potential for angiogenesis, bone regeneration, and modulation of the inflammatory milieu, which aimed at facilitating rotator cuff regeneration. In vitro studies showed that the composite hydrogel scaffold stimulated the angiogenic activity of human umbilical vein endothelial cells and osteogenic differentiation of bone marrow mesenchymal stem cells, transforming macrophages from M1 to M2. Moreover, imaging and immunohistochemical analysis of a rat rotator cuff injury models demonstrated that the composite hydrogel could effectively promote regeneration and exhibit remarkable biocompatibility. In summary, this composite hydrogel material established an effective platform for the release of metal ions and clickable peptides, which accelerated the regeneration of rotator cuff injuries and had broad prospects for application in rotator cuff therapy.
Collapse
Affiliation(s)
- Xinyu Zhang
- Bengbu Medical College, Bengbu 233030, China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Jun Ma
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Hanyin Hu
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Zhuoming Xu
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jintao Liu
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jiayi Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Bin Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Lili Shi
- Jiaxing University College of Medicine, Jiaxing 314000, China
| | - Huanhuan Luo
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Hongwei Xu
- Bengbu Medical College, Bengbu 233030, China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| |
Collapse
|
4
|
Chen Y, Chen Z, Zheng Z, Xia Y. Bio-inspired nanocomposite coatings on orthodontic archwires with corrosion resistant and antibacterial properties. Front Bioeng Biotechnol 2023; 11:1272527. [PMID: 37929189 PMCID: PMC10623432 DOI: 10.3389/fbioe.2023.1272527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
The corrosion resistance and antibacterial properties of fixed orthodontic devices are insufficient in the complex oral cavity, which delays tooth movement and causes enamel demineralization. To overcome the challenges, this research constructs a series of polydopamine-graphene oxide (PDA-GO) nanocoatings on representative NiTi archwires via self-assembly. The morphology, chemical structure, and multifunctional properties of coatings showed tunability dependent on the PDA/GO ratio. Optimized PDA-GO coatings with uniform and dense characteristics prolonged the diffusion path for the corrosive medium and reduced Ni dissolution in NiTi alloys. Meanwhile, the applied coatings endowed NiTi alloys with antibacterial activity against Streptococcus mutans due to the surface structures and inherent properties of PDA-GO. In vitro cytotoxicity tests further verified their good biocompatibility. This bio-inspired nanocomposite coating provides a practical reference for modification of dental metal surfaces to better behave in the intraoral environment.
Collapse
Affiliation(s)
| | | | | | - Yong Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Apostu AM, Sufaru IG, Tanculescu O, Stoleriu S, Doloca A, Ciocan Pendefunda AA, Solomon SM. Can Graphene Pave the Way to Successful Periodontal and Dental Prosthetic Treatments? A Narrative Review. Biomedicines 2023; 11:2354. [PMID: 37760795 PMCID: PMC10525677 DOI: 10.3390/biomedicines11092354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene, as a promising material, holds the potential to significantly enhance the field of dental practices. Incorporating graphene into dental materials imparts enhanced strength and durability, while graphene-based nanocomposites offer the prospect of innovative solutions such as antimicrobial dental implants or scaffolds. Ongoing research into graphene-based dental adhesives and composites also suggests their capacity to improve the quality and reliability of dental restorations. This narrative review aims to provide an up-to-date overview of the application of graphene derivatives in the dental domain, with a particular focus on their application in prosthodontics and periodontics. It is important to acknowledge that further research and development are imperative to fully explore the potential of graphene and ensure its safe use in dental practices.
Collapse
Affiliation(s)
- Alina Mihaela Apostu
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina-Georgeta Sufaru
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Tanculescu
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Stoleriu
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adrian Doloca
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alice Arina Ciocan Pendefunda
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Sorina Mihaela Solomon
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
6
|
Huang S, Zhong Y, Fu Y, Zheng X, Feng Z, Mo A. Graphene and its derivatives: "one stone, three birds" strategy for orthopedic implant-associated infections. Biomater Sci 2023; 11:380-399. [PMID: 36453143 DOI: 10.1039/d2bm01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Orthopedic implants provide an avascular surface for microbial attachment and biofilm formation, impeding the entry of immune cells and the diffusion of antibiotics. The above is an important cause of dental and orthopedic implant-associated infection (IAI). For the prevention and treatment of IAI, the drawbacks of antibiotic resistance and surgical treatment are increasingly apparent. Due to their outstanding biological properties such as biocompatibility, immunomodulatory effects, and antibacterial properties, graphene-based nanomaterials (GBNs) have been applied to bone tissue engineering to deal with IAI, and in particular have great potential application in drug/gene carriers, multi-functional platforms, and coating forms. Here we review the latest research progress and achievements in GBNs for the prevention and treatment of IAI, mainly including their biomedical applications for antibacterial and immunomodulation effects, and for inducing osteogenesis. Furthermore, the biosafety of graphene family materials in bone tissue regeneration and the feasibility of clinical application are critically analyzed and discussed.
Collapse
Affiliation(s)
- Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaofei Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Cui Y, Liu H, Tian Y, Fan Y, Li S, Wang G, Wang Y, Peng C, Wu D. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio 2022; 16:100409. [PMID: 36090611 PMCID: PMC9449864 DOI: 10.1016/j.mtbio.2022.100409] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
The treatment of infected bone defects is an intractable problem in orthopedics. It comprises two critical parts, namely that of infection control and bone defect repair. According to these two core tasks during treatment, the ideal approach of simultaneously controlling infection and repairing bone defects is promising treatment strategy. Several engineered biomaterials and drug delivery systems with dual functions of anti-bacterial action and ostogenesis-promotion have been developed and demonstrated excellent therapeutic effects. Compared with the conventional treatment method, the dual-functional composite scaffold can provide one-stage treatment avoiding multiple surgeries, thereby remarkably simplifying the treatment process and reducing the treatment time, overcoming the disadvantages of conventional bone transplantation. In this review, the impaired bone repair ability and its specific mechanisms in the microenvironment of pathogen infection and excessive inflammation were analyzed, providing a theoretical basis for the treatment of infectious bone defects. Furthermore, we discussed the composite dual-functional scaffold composed of a combination of antibacterial and osteogenic material. Finally, a series of advanced drug delivery systems with antibacterial and bone-promoting capabilities were summarized and discussed. This review provides a comprehensive understanding for the microenvironment of infectious bone defects and leading-edge design strategies for the antibacterial and bone-promoting dual-function scaffold, thus providing clinically significant treatment methods for infectious bone defects. Antibacterial and bone-promoting dual-function scaffolds are ideal strategies for treatment of infectious bone defects. The effect of infection on bone repair was summarized in detail from four important aspects. A variety of dual-function scaffolds based on antibacterial and osteogenic materials were discussed. Dual-function drug delivery systems promoting repair of infectious bone defects by locally releasing functional agents. Leading-edge design strategies, challenges and prospects for dual-functional biomaterials were provided.
Collapse
|
9
|
Qi H, Ke Q, Tang Q, Yin L, Yang L, Ning C, Su J, Fang L. Magnetic field regulation of mouse bone marrow mesenchymal stem cell behaviours on TiO
2
nanotubes via surface potential mediated by Terfenol‐D/P(VDF‐TrFE) film. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Haisheng Qi
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Qi Ke
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
| | - Qiwen Tang
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Lei Yin
- China‐Singapore International Joint Research Institute Guangzhou China
| | - Lixin Yang
- School of Mechanical & Automotive Engineering South China University of Technology Guangzhou China
| | - Chengyun Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
| | - Jianyu Su
- China‐Singapore International Joint Research Institute Guangzhou China
| | - Liming Fang
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing Guangzhou China
| |
Collapse
|
10
|
Peng C, Shu Z, Zhang C, Chen X, Wang M, Fan L. Surface modification of silk fibroin composite bone scaffold with polydopamine coating to enhance mineralization ability and biological activity for bone tissue engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caixing Peng
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan China
| | - Zhan Shu
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan China
| | - Cencen Zhang
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan China
| | - Xiuhao Chen
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan China
| | - Mengting Wang
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan China
| | - Lihong Fan
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan China
| |
Collapse
|
11
|
Wu H, Zhao C, Lin K, Wang X. Mussel-Inspired Polydopamine-Based Multilayered Coatings for Enhanced Bone Formation. Front Bioeng Biotechnol 2022; 10:952500. [PMID: 35875492 PMCID: PMC9301208 DOI: 10.3389/fbioe.2022.952500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Repairing bone defects remains a challenge in clinical practice and the application of artificial scaffolds can enhance local bone formation, but the function of unmodified scaffolds is limited. Considering different application scenarios, the scaffolds should be multifunctionalized to meet specific demands. Inspired by the superior adhesive property of mussels, polydopamine (PDA) has attracted extensive attention due to its universal capacity to assemble on all biomaterials and promote further adsorption of multiple external components to form PDA-based multilayered coatings with multifunctional property, which can induce synergistic enhancement of new bone formation, such as immunomodulation, angiogenesis, antibiosis and antitumor property. This review will summarize mussel-inspired PDA-based multilayered coatings for enhanced bone formation, including formation mechanism and biofunction of PDA coating, as well as different functional components. The synergistic enhancement of multiple functions for better bone formation will also be discussed. This review will inspire the design and fabrication of PDA-based multilayered coatings for different application scenarios and promote deeper understanding of their effect on bone formation, but more efforts should be made to achieve clinical translation. On this basis, we present a critical conclusion, and forecast the prospects of PDA-based multilayered coatings for bone regeneration.
Collapse
Affiliation(s)
| | | | - Kaili Lin
- *Correspondence: Kaili Lin, ; Xudong Wang,
| | | |
Collapse
|
12
|
Long S, Xie C, Lu X. Natural polymer‐based adhesive hydrogel for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Siyu Long
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| |
Collapse
|
13
|
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022; 10:850110. [PMID: 35299643 PMCID: PMC8921557 DOI: 10.3389/fbioe.2022.850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
With the development of three-dimensional (3D) printed technology, 3D printed alloy implants, especially titanium alloy, play a critical role in biomedical fields such as orthopedics and dentistry. However, untreated titanium alloy implants always possess a bioinert surface that prevents the interface osseointegration, which is necessary to perform surface modification to enhance its biological functions. In this article, we discuss the principles and processes of chemical, physical, and biological surface modification technologies on 3D printed titanium alloy implants in detail. Furthermore, the challenges on antibacterial, osteogenesis, and mechanical properties of 3D-printed titanium alloy implants by surface modification are summarized. Future research studies, including the combination of multiple modification technologies or the coordination of the structure and composition of the composite coating are also present. This review provides leading-edge functionalization strategies of the 3D printed titanium alloy implants.
Collapse
Affiliation(s)
- Xiao Sheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
14
|
Liu M, Fernandes DCC, Saleeba ZSSL, Hurt RH. Controlled Release of Molecular Intercalants from Two-Dimensional Nanosheet Films. ACS NANO 2021; 15:20105-20115. [PMID: 34870425 DOI: 10.1021/acsnano.1c07888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solution co-deposition of two-dimensional (2D) nanosheets with chemical solutes yields nanosheet-molecular heterostructures. A feature of these macroscopic layered hybrids is their ability to release the intercalated molecular agent to express chemical functionality on their surfaces or in their near surroundings. Systematic design methods are needed to control this molecular release to match the demand for rate and lifetime in specific applications. We hypothesize that release kinetics are controlled by transport processes within the layered solids, which primarily involve confined molecular diffusion through nanochannels formed by intersheet van der Waals gaps. Here a variety of graphene oxide (GO)/molecular hybrids are fabricated and subject to transient experiments to characterize release kinetics, locations, and mechanisms. The measured release rate profiles can be successfully described by a numerical model of internal transport processes, and the results used to extract effective Z-directional diffusion coefficients for various film types. The diffusion coefficients are found to be 8 orders of magnitude lower than those in free solution due to nanochannel confinement and serpentine path effects, and this retardation underlies the ability of 2D materials to control and extend release over useful time scales. In-plane texturing of the heterostructured films by compressive wrinkling or crumpling is shown to be a useful design tool to control the release rate for a given film type and molecular intercalant. The potential of this approach is demonstrated through case studies on the controlled release of chemical virucidal agents.
Collapse
Affiliation(s)
- Muchun Liu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | - Zachary S S L Saleeba
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
15
|
Lemos R, Maia FR, Ribeiro VP, Costa JB, Coutinho PJG, Reis RL, Oliveira JM. Carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds for bone tissue engineering applications. J Mater Chem B 2021; 9:9561-9574. [PMID: 34761792 DOI: 10.1039/d1tb01972d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In bone tissue engineering, the development of advanced biomimetic scaffolds has led to the quest for biomotifs in scaffold design that better recreate the bone matrix structure and composition and hierarchy at different length scales. In this study, an advanced hierarchical scaffold consisting of silk fibroin combined with a decellularized cell-derived extracellular matrix and reinforced with carbon nanotubes was developed. The goal of the carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds is to harvest the individual properties of their constituents to introduce hierarchical capacity in order to improve standard silk fibroin scaffolds. The scaffolds were fabricated using enzymatic cross-linking, freeze modeling, and decellularization methods. The developed scaffolds were assessed for the pore structure and mechanical properties showing satisfying results to be used in bone regeneration. The developed carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds were shown to be bioactive in vitro and expressed no hemolytic effect. Furthermore, cellular in vitro studies on human adipose-derived stem cells (hASCs) showed that scaffolds supported cell proliferation. The hASCs seeded onto these scaffolds evidenced similar metabolic activity to standard silk fibroin scaffolds but increased ALP activity. The histological staining showed cell infiltration into the scaffolds and visible collagen production. The expression of several osteogenic markers was investigated, further supporting the osteogenic potential of the developed carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds. The hemolytic assay demonstrated the hemocompatibility of the hierarchical scaffolds. Overall, the carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds presented the required architecture for bone tissue engineering applications.
Collapse
Affiliation(s)
- Rafael Lemos
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - F Raquel Maia
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Viviana P Ribeiro
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - João B Costa
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
16
|
Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rafael Lemos
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- Centre of Physics (CFUM) University of Minho Campus de Gualtar 4710-057 Braga Portugal
| | - F. Raquel Maia
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
17
|
Kaliaraj GS, Siva T, Ramadoss A. Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance - a review. J Mater Chem B 2021; 9:9433-9460. [PMID: 34755756 DOI: 10.1039/d1tb01301g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In modern days, the usage of trauma fixation devices has significantly increased due to sports injury, age-related issues, accidents, and revision surgery purposes. Numerous materials such as stainless steel, titanium, Co-Cr alloy, polymers, and ceramics have been used to replace the missing or defective parts of the human body. After implantation, body fluids (Na+, K+, and Cl-), protein, and blood cells interact with the surface of metallic implants, which favours the release of ions from the metallic surface to surrounding body tissues, leading to a hypersensitive reaction. Body pH, temperature, and interaction of immune cells also cause metal ion leaching and lose host cell interaction and effective mineralization for better durability. Moreover, microbial invasion is another important crisis, which produces extracellular compounds onto the biomaterial surface through which it escapes from the antimicrobial agents. To enhance the performance of materials by improving mechanical, corrosion resistance, antimicrobial, and biocompatibility properties, surface modification is a prerequisite method in which chemical vapour deposition (CVD), physical vapour deposition (PVD), sol-gel method, and electrochemical deposition are generally involved. The properties of bioceramics such as chemical inertness, bioactivity, biocompatibility, and corrosion protection make them most suitable for the surface functionalization of metallic implants. To the best of our knowledge, very limited literature is available to discuss the interaction of body proteins, pH, and temperature onto bioceramic coatings. Hence, the present review focuses on the corrosion behaviour of different ceramic composite coating materials with different conditions. This review initially briefs the properties and surface chemistry of metal implants and the need for surface modifications by different deposition techniques. Further, mechanical, cytotoxicity, antimicrobial property, and electrochemical behaviour of ceramics and metal nitride coatings are discussed. Finally, future perspectives of coatings are outlined for biomedical applications.
Collapse
Affiliation(s)
- Gobi Saravanan Kaliaraj
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| | - T Siva
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| |
Collapse
|
18
|
Cheng J, Liu J, Wu B, Liu Z, Li M, Wang X, Tang P, Wang Z. Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Front Bioeng Biotechnol 2021; 9:734688. [PMID: 34660555 PMCID: PMC8511325 DOI: 10.3389/fbioe.2021.734688] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023] Open
Abstract
Bone regeneration or replacement has been proved to be one of the most effective methods available for the treatment of bone defects caused by different musculoskeletal disorders. However, the great contradiction between the large demand for clinical therapies and the insufficiency and deficiency of natural bone grafts has led to an urgent need for the development of synthetic bone graft substitutes. Bone tissue engineering has shown great potential in the construction of desired bone grafts, despite the many challenges that remain to be faced before safe and reliable clinical applications can be achieved. Graphene, with outstanding physical, chemical and biological properties, is considered a highly promising material for ideal bone regeneration and has attracted broad attention. In this review, we provide an introduction to the properties of graphene and its derivatives. In addition, based on the analysis of bone regeneration processes, interesting findings of graphene-based materials in bone regenerative medicine are analyzed, with special emphasis on their applications as scaffolds, membranes, and coatings in bone tissue engineering. Finally, the advantages, challenges, and future prospects of their application in bone regenerative medicine are discussed.
Collapse
Affiliation(s)
- Junyao Cheng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Bing Wu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zhongyang Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zheng Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Shim NY, Heo JS. Performance of the Polydopamine-Graphene Oxide Composite Substrate in the Osteogenic Differentiation of Mouse Embryonic Stem Cells. Int J Mol Sci 2021; 22:ijms22147323. [PMID: 34298943 PMCID: PMC8303500 DOI: 10.3390/ijms22147323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A high cell viability of ESCs cultured on the PDA/GO composite-coated surface was initially ensured. Then, the osteogenic differentiation of the ESCs in response to the PDA/GO substrate was assessed by alkaline phosphatase (ALP) activity, intracellular calcium levels, matrix mineralization assay, and evaluation of the mRNA and protein levels of osteogenic factors. The culture of ESCs on the PDA/GO substrate presented higher osteogenic potency than that on the uncoated control surface. ESCs cultured on the PDA/GO substrate expressed significantly higher levels of integrin α5 and β1, as well as bone morphogenetic protein receptor (BMPR) types I and II, compared with the control groups. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was observed in ESCs culture on the PDA/GO substrate. Moreover, BMP signal transduction by SMAD1/5/8 phosphorylation was increased more in cells on PDA/GO than in the control. The nuclear translocation of SMAD1/5/8 in cells was also processed in response to the PDA/GO substrate. Blocking activation of the integrin α5/β1, MAPK, or SMAD signaling pathways downregulated the PDA/GO-induced osteogenic differentiation of ESCs. These results suggest that the PDA/GO composite stimulates the osteogenic differentiation of ESCs via the integrin α5/β1, MAPK, and BMPR/SMAD signaling pathways.
Collapse
|
20
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
21
|
Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, Laurencin CT. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv Healthc Mater 2021; 10:e2001414. [PMID: 33103370 PMCID: PMC8218309 DOI: 10.1002/adhm.202001414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Graphene and its derivatives have continued to garner worldwide interest due to their unique characteristics. Having expanded into biomedical applications, there have been efforts to employ their exceptional properties for the regeneration of different tissues, particularly bone. This article presents a comprehensive review on the usage of graphene-based materials for bone regenerative engineering. The graphene family of materials (GFMs) are used either alone or in combination with other biomaterials in the form of fillers in composites, coatings for both scaffolds and implants, or vehicles for the delivery of various signaling and therapeutic agents. The applications of the GFMs in each of these diverse areas are discussed and emphasis is placed on the characteristics of the GFMs that have implications in this regard. In tandem and of importance, this article evaluates the safety and biocompatibility of the GFMs and carefully elucidates how various factors influence the biocompatibility and biodegradability of this new class of nanomaterials. In conclusion, the challenges and opportunities regarding the use of the GFMs in regenerative engineering applications are discussed, and future perspectives for the developments in this field are proposed.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
22
|
Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. Int J Biol Macromol 2020; 164:1960-1972. [DOI: 10.1016/j.ijbiomac.2020.08.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
|
23
|
Fabrication of graphene/gelatin/chitosan/tricalcium phosphate 3D printed scaffolds for bone tissue regeneration applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01615-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Novel ternary vancomycin/strontium doped hydroxyapatite/graphene oxide bioactive composite coatings electrodeposited on titanium substrate for orthopedic applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|
26
|
Rezaei H, Shahrezaee M, Jalali Monfared M, Ghorbani F, Zamanian A, Sahebalzamani M. Mussel-inspired polydopamine induced the osteoinductivity to ice-templating PLGA-gelatin matrix for bone tissue engineering application. Biotechnol Appl Biochem 2020; 68:185-196. [PMID: 32248561 DOI: 10.1002/bab.1911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 03/10/2020] [Indexed: 11/06/2022]
Abstract
In this study, poly(lactic-co-glycolic acid) (PLGA)-gelatin scaffolds were fabricated using the freeze-casting technique. Polydopamine (PDA) coating was applied on the surface of scaffolds to enhance the hydrophilicity, bioactivity, and cellular behavior of the composite constructs. Further, the synergistic effect of PDA coating and lamellar microstructure of scaffolds was evaluated on the promotion of properties. Based on morphological observations, freeze-casting constructs showed lamellar pore channels while the uniformity and pore size were slightly affected by deposition of PDA. The hydrophilicity and swelling capacity of the scaffolds were assessed using contact angle measurement and phosphate buffered saline absorption ratio. The results indicated a significant increment in water-matrix interactions following surface modification. The evaluation of the biodegradation ratio revealed the higher degree of degradation in PDA-coated samples owing to the presence of hydrophilic functional groups in the chemical structure of PDA. On the other hand, the bioactivity potential of PDA in the simulated body fluid solution confirmed the possibility of using coated constructs as a bone reconstructive substitute. The improvement of cellular attachment and filopodia formation in PDA-contained matrixes was the other benefit of the coating process. Furthermore, cellular proliferation and ALP activity were enhanced after PDA coating. The suggested PDA-coated PLGA-gelatin scaffolds can be applied in bone tissue regeneration.
Collapse
Affiliation(s)
- Hessam Rezaei
- Department of Orthopedic Surgery, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran.,Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Shahrezaee
- Department of Orthopedic Surgery, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Marziyeh Jalali Monfared
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital, Shanghai Fudan University Pudong Medical Center, Shanghai, China
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
| | - Mohammadali Sahebalzamani
- Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Dai C, Li Y, Pan W, Wang G, Huang R, Bu Y, Liao X, Guo K, Gao F. Three-Dimensional High-Porosity Chitosan/Honeycomb Porous Carbon/Hydroxyapatite Scaffold with Enhanced Osteoinductivity for Bone Regeneration. ACS Biomater Sci Eng 2019; 6:575-586. [PMID: 33463242 DOI: 10.1021/acsbiomaterials.9b01381] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional honeycomb porous carbon (HPC) has attracted increasing attention in bioengineering due to excellent mechanical properties and a high surface-to-volume ratio. In this paper, a three-dimensional chitosan (CS)/honeycomb porous carbon/hydroxyapatite composite was prepared by nano-sized hydroxyapatite (nHA) on the HPC surface in situ deposition, dissolved in chitosan solution, and vacuum freeze-dried. The structure and composition of CS/HPC/nHA were characterized by scanning electron microscopy, transmission electron miscroscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy, and the porosity, swelling ratio, and mechanical properties of the scaffold were also tested. The as-prepared scaffolds possess hierarchical pores and organic-inorganic components, which are similar in composition and structure to bone tissues. The synthesized composite scaffold has high porosity and a certain mechanical strength. By culturing mouse bone marrow mesenchymal stem cells on the surface of the scaffold, it was confirmed that the scaffold facilitated its growth and promoted its differentiation into the osteogenesis direction. In vivo experiments further demonstrate that the CS/HPC/nHA composite scaffold has a significant advantage in promoting bone formation in the bone defect area. All the results suggested that the CS/HPC/nHA scaffolds have great application prospect in bone tissue engineering.
Collapse
Affiliation(s)
- Chengbai Dai
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China.,Pizhou City Hospital affiliated to Xuzhou Medical University, 221300 Pizhou, China
| | - Yang Li
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Wenzhen Pan
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Guoqiang Wang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Ruqi Huang
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Yeyang Bu
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Kaijin Guo
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| |
Collapse
|
28
|
Jabbari F, Hesaraki S, Houshmand B. The physical, mechanical, and biological properties of silk fibroin/chitosan/reduced graphene oxide composite membranes for guided bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1779-1802. [DOI: 10.1080/09205063.2019.1666235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- F. Jabbari
- Biomaterials Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
| | - S. Hesaraki
- Biomaterials Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
| | - B. Houshmand
- Department of Periodontics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Do biomedical engineers dream of graphene sheets? Biomater Sci 2019; 7:1228-1239. [PMID: 30720810 DOI: 10.1039/c8bm01636d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past few years, graphene has outstandingly emerged as a key nanomaterial for boosting the performance of commercial, industrial and scientific related technologies. The popularity of this novel nanomaterial in biomedical engineering is due to its excellent biological, electronic, optical and thermal properties that, as a whole, surpass the features of commonly used biomaterials and consequently open a wide range of applications so far within the reach of science fiction. In this minireview, the potential of graphene and its based materials in the expanding biomedical field is highlighted with focus on groundbreaking diagnostic, monitoring and therapeutic strategies. Some of the major challenges related to the synthesis and safety of graphene-based materials are also briefly discussed because of their critical importance in bringing this class of carbon materials closer to the clinic.
Collapse
Affiliation(s)
- André F Girão
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
30
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
31
|
Advances in materials for cellular applications (Review). Biointerphases 2019; 14:010801. [PMID: 30803241 DOI: 10.1116/1.5083803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The goal of this review is to highlight materials that show exciting promise for either entirely new cellular-level applications or new approaches to long-standing biological challenges. The authors start with two more established materials, graphene and carbon nanotubes, and then progress to conducting polymers, followed by an overview of the microresonators, nanowires, and spasers used as intracellular lasers. These materials provide new approaches to gene and drug delivery, cellular regeneration, mechanical sensing, imaging, and the modulation and recording of cellular activity. Of specific interest is the comparison of these materials with existing technologies, the method of cellular delivery, and the all-encompassing challenge of biocompatibility. Concluding remarks examine the extension of these materials from cellular-level experiments to in vivo applications, including the method of activation: light, electricity, and ultrasound. Overall, these materials and their associated applications illustrate the most recent advances in material-cell interactions.
Collapse
|
32
|
Wang Q, Han G, Yan S, Zhang Q. 3D Printing of Silk Fibroin for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E504. [PMID: 30736388 PMCID: PMC6384667 DOI: 10.3390/ma12030504] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) printing is regarded as a critical technological-evolution in material engineering, especially for customized biomedicine. However, a big challenge that hinders the 3D printing technique applied in biomedical field is applicable bioink. Silk fibroin (SF) is used as a biomaterial for decades due to its remarkable high machinability and good biocompatibility and biodegradability, which provides a possible alternate of bioink for 3D printing. In this review, we summarize the requirements, characteristics and processabilities of SF bioink, in particular, focusing on the printing possibilities and capabilities of bioink. Further, the current achievements of cell-loading SF based bioinks were comprehensively viewed from their physical properties, chemical components, and bioactivities as well. Finally, the emerging issues and prospects of SF based bioink for 3D printing are given. This review provides a reference for the programmable and multiple processes and the further improvement of silk-based biomaterials fabrication by 3D printing.
Collapse
Affiliation(s)
- Qiusheng Wang
- Key Laboratory of Textile Fiber & Product (Ministry of Education), School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Guocong Han
- Key Laboratory of Textile Fiber & Product (Ministry of Education), School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Shuqin Yan
- Key Laboratory of Textile Fiber & Product (Ministry of Education), School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Qiang Zhang
- Key Laboratory of Textile Fiber & Product (Ministry of Education), School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
33
|
Wu J, Zheng A, Liu Y, Jiao D, Zeng D, Wang X, Cao L, Jiang X. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Int J Nanomedicine 2019; 14:733-751. [PMID: 30705589 PMCID: PMC6342216 DOI: 10.2147/ijn.s187664] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction Bone tissue engineering has become one of the most effective methods to treat bone defects. Silk fibroin (SF) is a natural protein with no physiological activities, which has features such as good biocompatibility and easy processing and causes minimal inflammatory reactions in the body. Scaffolds prepared by electrospinning SF can be used in bone tissue regeneration and repair. Graphene oxide (GO) is rich in functional groups, has good biocompatibility, and promotes osteogenic differentiation of stem cells, while bone morphogenetic protein-2 (BMP-2) polypeptide has an advantage in promoting osteogenesis induction. In this study, we attempted to graft BMP-2 polypeptide onto GO and then bonded the functionalized GO onto SF electrospun scaffolds through electrostatic interactions. The main purpose of this study was to further improve the biocompatibility of SF electrospun scaffolds, which could promote the osteogenic differentiation of bone marrow mesenchymal stem cells and the repair of bone tissue defects. Materials and methods The successful synthesis of GO and functionalized GO was confirmed by transmission electron microscope, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Scanning electron microscopy, atomic force microscopy, mechanical test, and degradation experiment confirmed the preparation of SF electrospun scaffolds and the immobilization of GO on the fibers. In vitro experiment was used to verify the biocompatibility of the composite scaffolds, and in vivo experiment was used to prove the repairing ability of the composite scaffolds for bone defects. Results We successfully fabricated the composite scaffolds, which enhanced biocompatibility, not only promoting cell adhesion and proliferation but also greatly enhancing in vitro osteogenic differentiation of bone marrow stromal cells using either an osteogenic or non-osteogenic medium. Furthermore, transplantation of the composite scaffolds significantly promoted in vivo bone formation in critical-sized calvarial bone defects. Conclusion These findings suggested that the incorporation of BMP-2 polypeptide-functionalized GO into chitosan-coated SF electrospun scaffolds was a viable strategy for fabricating excellent scaffolds that enhance the regeneration of bone defects.
Collapse
Affiliation(s)
- Jiannan Wu
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Ao Zheng
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Delong Jiao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Deliang Zeng
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Xiao Wang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Lingyan Cao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| |
Collapse
|
34
|
Zhang Y, Chen M, Tian J, Gu P, Cao H, Fan X, Zhang W. In situ bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Biomater Sci 2019; 7:3266-3276. [DOI: 10.1039/c9bm00561g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biodegradable hybrid double-network hydrogel for stem cell-enhanced bone regeneration.
Collapse
Affiliation(s)
- Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
35
|
Cheng X, Wan Q, Pei X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. NANOSCALE RESEARCH LETTERS 2018; 13:289. [PMID: 30229504 PMCID: PMC6143492 DOI: 10.1186/s11671-018-2694-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023]
Abstract
We have witnessed abundant breakthroughs in research on the bio-applications of graphene family materials in current years. Owing to their nanoscale size, large specific surface area, photoluminescence properties, and antibacterial activity, graphene family materials possess huge potential for bone tissue engineering, drug/gene delivery, and biological sensing/imaging applications. In this review, we retrospect recent progress and achievements in graphene research, as well as critically analyze and discuss the bio-safety and feasibility of various biomedical applications of graphene family materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| |
Collapse
|
36
|
Development of a Graphene Oxide-Incorporated Polydimethylsiloxane Membrane with Hexagonal Micropillars. Int J Mol Sci 2018; 19:ijms19092517. [PMID: 30149618 PMCID: PMC6164554 DOI: 10.3390/ijms19092517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 01/22/2023] Open
Abstract
Several efforts have been made on the development of bioscaffolds including the polydimethylsiloxane (PDMS) elastomer for supporting cell growth into stable sheets. However, PDMS has several disadvantages, such as intrinsic surface hydrophobicity and mechanical strength. Herein, we generated a novel PDMS-based biomimetic membrane by sequential modifications of the PMDS elastomer with graphene oxide (GO) and addition of a hexagonal micropillar structure at the bottom of the biomembrane. GO was initially homogenously mixed with pure PDMS and then was further coated onto the upper surface of the resultant PDMS. The elastic modulus and hydrophilicity were significantly improved by such modifications. In addition, the development of hexagonal micropillars with smaller diameters largely improved the ion permeability and increased the motion resistance. We further cultured retinal pigment epithelial (RPE) cells on the surface of this modified PDMS biomembrane and assayed its biocompatibility. Remarkably, the GO incorporation and coating exhibited beneficial effect on the cell growth and the new formation of tight junctions in RPE cells. Taken together, this GO-modified PDMS scaffold with polyhexagonal micropillars may be utilized as an ideal cell sheet and adaptor for cell cultivation and can be used in vivo for the transplantation of cells such as RPE cells.
Collapse
|