1
|
Wang K, Liu Y, Liu C, Zhu H, Li X, Yu M, Liu L, Sang G, Sheng W, Zhu B. A new-type HOCl-activatable fluorescent probe and its applications in water environment and biosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156164. [PMID: 35609703 PMCID: PMC9124045 DOI: 10.1016/j.scitotenv.2022.156164] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/02/2023]
Abstract
The outbreak and spread of Corona Virus Disease 2019 (COVID-19) has led to a significant increase in the consumption of sodium hypochlorite (NaOCl) disinfectants. NaOCl hydrolyzes to produce hypochlorous acid (HOCl) to kill viruses, which is a relatively efficient chlorine-based disinfectant commonly used in public disinfection. While people enjoy the convenience of NaOCl disinfection, excessive and indiscriminate use of it will affect the water environment and threaten human health. Importantly, HOCl is an indispensable reactive oxygen species (ROS) in human body. Whether its concentration is normal or not is closely related to human health. Excessive production of HOCl in the body contributes to some inflammatory diseases and even cancer. Also, we noticed that the concentration of ROS in cancer cells is about 10 times higher than that in normal cells. Herein, we developed a HOCl-activatable biotinylated dual-function fluorescent probe BTH. For this probe, we introduced biotin on the naphthalimide fluorophore, which increased the water solubility and enabled the probe to aggregate in cancer cells by targeting specific receptor overexpressed on the surface of cancer cell membrane. After reacting to HOCl, the p-aminophenylether moiety of this probe was oxidatively removed and the fluorescence of the probe was recovered. As expected, in the PBS solution with pH of 7.4, BTH could give full play to the performance of detecting HOCl, and it has made achievements in detecting the concentration of HOCl in actual water samples. Besides that, BTH had effectively distinguished between cancer cells and normal cells through a dual-function discrimination strategy, which used biotin to enrich the probe in cancer cells and reacted with overexpressed HOCl in cancer cells. Importantly, this dual-function discrimination strategy could obtain the precision detection of cancer cells, thereby offering assistance for improving the accuracy of early cancer diagnosis.
Collapse
Affiliation(s)
- Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yilin Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lunying Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Guoqing Sang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Lu J, Wang Q, Wang Z, Liu J, Guo Y, Pan C, Li X, Che J, Shi Z, Zhang S. Log P analyzation-based discovery of GSH activated biotin-tagged fluorescence probe for selective colorectal cancer imaging. Eur J Med Chem 2022; 239:114555. [PMID: 35763866 DOI: 10.1016/j.ejmech.2022.114555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Targeted activatable fluorescent probes could provide an effective approach for colorectal cancer imaging. In this study, F1 was found as an effective targeted activatable fluorescent probe based on log P analysis. In vitro experiments demonstrated that the initial fluorescence of the developed probe F1 was initially well quenched, and the fluorescence increased after the probe interacted with glutathione. Cell imaging results showed that the probe had good cell permeability and selectivity. Remarkably, F1 displayed enhanced tumor tissue fluorescence in MC-38 tumor-bearing mice. Notably, it showed selectivity in imaging clinical specimens of human colorectal cancer tissues. Accordingly, this study shows that log P analysis can facilitate the developing efficient of biotin-tagged activatable probes, and the identified F1 has a good potential in clinical colorectal cancer diagnosis.
Collapse
Affiliation(s)
- Jialiang Lu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, 310005, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qianqian Wang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhaojun Wang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Jinguo Liu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chenghao Pan
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zheng Shi
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, 310005, China; The Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, 310005, China; The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| |
Collapse
|
3
|
Porubský M, Gurská S, Stanková J, Hajdúch M, Džubák P, Hlaváč J. AminoBODIPY Conjugates for Targeted Drug Delivery Systems and Real-Time Monitoring of Drug Release. Mol Pharm 2021; 18:2385-2396. [PMID: 33961440 DOI: 10.1021/acs.molpharmaceut.1c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we report two concepts of drug delivery based on small-molecule drug conjugates with the ability of specific targeting and drug release monitoring via ratiometric fluorescence. The functionality of these concepts has been verified by two model systems consisting of three parts: (i) fluorescent aminoBODIPY for real-time detection of conjugate cleavage, (ii) a c(RGDfK) peptide specific for αvβ3 integrin receptors targeting angiogenesis in most solid tumors or redBODIPY for conjugate cleavage monitoring via FRET, and (iii) pegylated-2-phenyl-3-hydroxy-4(1H)-quinolinone (3HQ) as a model drug. The model drug release is based on a self-immolative disulfide linker sensitive to environments containing thiols, especially glutathione, which is overexpressed in cancer cells. The results show effective thiol-mediated cleavage of the fluorescent reporter and the subsequent liberation of the drug in a tube. The conjugate with c(RGDfK) was confirmed to penetrate the cells via interaction with integrin receptors. Drug release from this conjugate is possible to monitor inside the cells. Further, the synthetic approach to the conjugates and the method of fluorescence monitoring of the drug release have also been described.
Collapse
Affiliation(s)
- Martin Porubský
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Jarmila Stanková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
4
|
Lee J, Kim HS, Jangili P, Kang HG, Sharma A, Kim JS. Fluorescent Probe for Monitoring Hydrogen Peroxide in COX-2-Positive Cancer Cells. ACS APPLIED BIO MATERIALS 2021; 4:2073-2079. [PMID: 35014334 DOI: 10.1021/acsabm.0c01135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen peroxide (H2O2), an important marker for oxidative stress, plays a vital role in cellular biological functions. Overproduction of H2O2 causes oxidative damage to cellular functions and promotes cancer and other neurodegenerative diseases. Also, cyclooxygenase-2 (COX-2) enzyme is known to be expressed in several cancer types and exerts multifaceted roles in carcinogenesis and resistance to cancer treatment. Hence, it is important to monitor the H2O2 concentration changes in the COX-2-expressing cancer cells. Herein, we have developed a molecular fluorescent ratiometric H2O2-responsive probe (NPDIN) composed of indomethacin (COX-2 inhibitor) conjugated with 1,8-napthalimide boronate ester as fluorescent reporter through a chemical linker. The probe was capable of imaging the endogenous H2O2 in COX-2 overexpressing cancer cell lines (A549, LoVo, HT29, and Caco-2). Further studies revealed the critical role of the indomethacin moiety in the cellular uptake behavior of NPDIN in COX-2-overexpressing cancer cells. Collectively, our results demonstrated NPDIN as a COX-2-positive cancer-targeting sensitive ratiometric fluorescent probe (I554/I398) for H2O2 imaging and showed its promising biological applications in the future.
Collapse
Affiliation(s)
- Jiyeong Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, South Korea
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, South Korea
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organization, Sector-30C, Chandigarh 160030, India
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
5
|
Liu F, Shen Y, Chen S, Yan G, Zhang Q, Guo Q, Gu Y. Tumor‐Targeting Fluorescent Probe Based on 1,8‐Naphthalimide and Porphyrin Groups. ChemistrySelect 2020. [DOI: 10.1002/slct.202001340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Liu
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
- School of MechanicalMedical & Process EngineeringScience and Engineering FacultyQueensland University of Technology Brisbane QLD 4001 Australia
| | - Yan‐Chun Shen
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Si Chen
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Guo‐Ping Yan
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Qiao Zhang
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Qing‐Zhong Guo
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Yuan‐Tong Gu
- School of MechanicalMedical & Process EngineeringScience and Engineering FacultyQueensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
6
|
Koo S, Bobba KN, Cho MY, Park HS, Won M, Velusamy N, Hong KS, Bhuniya S, Kim JS. Molecular Theranostic Agent with Programmed Activation for Hypoxic Tumors. ACS APPLIED BIO MATERIALS 2019; 2:4648-4655. [DOI: 10.1021/acsabm.9b00722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kondapa Naidu Bobba
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Nithya Velusamy
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Yang Z, Lin H, Huang J, Li A, Sun C, Richmond J, Gao J. A gadolinium-complex-based theranostic prodrug for in vivo tumour-targeted magnetic resonance imaging and therapy. Chem Commun (Camb) 2019; 55:4546-4549. [DOI: 10.1039/c9cc01816f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular theranostic prodrug for treatment of tumour and real-time monitoring via MRI in vivo was reported.
Collapse
Affiliation(s)
- Zhaoxuan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jiaqi Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jonathan Richmond
- Chemical Nanoscience Laboratory
- School of Natural and Environmental Sciences
- Newcastle University
- Newcastle-Upon-Tyne
- UK
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
8
|
Pal K, Sharma A, Koner AL. Synthesis of Two-Photon Active Tricomponent Fluorescent Probe for Distinguishment of Biotin Receptor Positive and Negative Cells and Imaging 3D-Spheroid. Org Lett 2018; 20:6425-6429. [PMID: 30295496 DOI: 10.1021/acs.orglett.8b02748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fluorescence microscopy-based distinguishment between biotin receptor (BiR) positive and negative cell lines via receptor-mediated endocytosis has been demonstrated. A water-soluble, three-component, two-photon (2P) active solvatofluorochromic probe has been designed and synthesized. The applicability of the probe for 2P microscopy and 3D-spheroid was also assessed.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal - 462066 , India
| | - Aman Sharma
- ExoCan Healthcare Technologies Pvt. Ltd. , Pune - 411008 , India
| | - Apurba L Koner
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal - 462066 , India
| |
Collapse
|
9
|
He XP, Tian H. Lightening Up Membrane Receptors with Fluorescent Molecular Probes and Supramolecular Materials. Chem 2018. [DOI: 10.1016/j.chempr.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Sharma A, Kim EJ, Shi H, Lee JY, Chung BG, Kim JS. Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation. Biomaterials 2017; 155:145-151. [PMID: 29175083 DOI: 10.1016/j.biomaterials.2017.11.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023]
Abstract
The high incidence of colorectal cancer worldwide is currently a major health concern. Although conventional chemotherapy and surgery are effective to some extent, there is always a risk of relapse due to associated side effects, including post-surgical complications and non-discrimination between cancer and normal cells. In this study, we developed a small molecule-based theranostic system, Gal-Dox, which is preferentially taken up by colon cancer cells through receptor-mediated endocytosis. After cancer-specific activation, the active drug Dox (doxorubicin) is released with a fluorescence turn-on response, allowing both drug localization and site of action to be monitored. The therapeutic potency of Gal-Dox was also evaluated, both in vivo and ex vivo, thus illustrating the potential of Gal-Dox as a colorectal cancer theranostic with great specificity.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Eun-Joong Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, South Korea
| | - Hu Shi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul 04107, South Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea.
| |
Collapse
|